MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resindir Unicode version

Theorem resindir 5295
Description: Class restriction distributes over intersection. (Contributed by NM, 18-Dec-2008.)
Assertion
Ref Expression
resindir

Proof of Theorem resindir
StepHypRef Expression
1 inindir 3715 . 2
2 df-res 5016 . 2
3 df-res 5016 . . 3
4 df-res 5016 . . 3
53, 4ineq12i 3697 . 2
61, 2, 53eqtr4i 2496 1
Colors of variables: wff setvar class
Syntax hints:  =wceq 1395   cvv 3109  i^icin 3474  X.cxp 5002  |`cres 5006
This theorem is referenced by:  inimass  5427  fnreseql  5997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-v 3111  df-in 3482  df-res 5016
  Copyright terms: Public domain W3C validator