![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > resixp | Unicode version |
Description: Restriction of an element of an infinite Cartesian product. (Contributed by FL, 7-Nov-2011.) (Proof shortened by Mario Carneiro, 31-May-2014.) |
Ref | Expression |
---|---|
resixp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resexg 5321 | . . 3 | |
2 | 1 | adantl 466 | . 2 |
3 | simpr 461 | . . . . 5 | |
4 | elixp2 7493 | . . . . 5 | |
5 | 3, 4 | sylib 196 | . . . 4 |
6 | 5 | simp2d 1009 | . . 3 |
7 | simpl 457 | . . 3 | |
8 | fnssres 5699 | . . 3 | |
9 | 6, 7, 8 | syl2anc 661 | . 2 |
10 | 5 | simp3d 1010 | . . . 4 |
11 | ssralv 3563 | . . . 4 | |
12 | 7, 10, 11 | sylc 60 | . . 3 |
13 | fvres 5885 | . . . . 5 | |
14 | 13 | eleq1d 2526 | . . . 4 |
15 | 14 | ralbiia 2887 | . . 3 |
16 | 12, 15 | sylibr 212 | . 2 |
17 | elixp2 7493 | . 2 | |
18 | 2, 9, 16, 17 | syl3anbrc 1180 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 e. wcel 1818 A. wral 2807
cvv 3109
C_ wss 3475 |` cres 5006 Fn wfn 5588
` cfv 5593 X_ cixp 7489 |
This theorem is referenced by: resixpfo 7527 ixpfi2 7838 ptrescn 20140 ptuncnv 20308 ptcmplem2 20553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-res 5016 df-iota 5556 df-fun 5595 df-fn 5596 df-fv 5601 df-ixp 7490 |
Copyright terms: Public domain | W3C validator |