![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > resmpt3 | Unicode version |
Description: Unconditional restriction of the mapping operation. (Contributed by Stefan O'Rear, 24-Jan-2015.) (Proof shortened by Mario Carneiro, 22-Mar-2015.) |
Ref | Expression |
---|---|
resmpt3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resres 5291 | . 2 | |
2 | ssid 3522 | . . . 4 | |
3 | resmpt 5328 | . . . 4 | |
4 | 2, 3 | ax-mp 5 | . . 3 |
5 | 4 | reseq1i 5274 | . 2 |
6 | inss1 3717 | . . 3 | |
7 | resmpt 5328 | . . 3 | |
8 | 6, 7 | ax-mp 5 | . 2 |
9 | 1, 5, 8 | 3eqtr3i 2494 | 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1395 i^i cin 3474
C_ wss 3475 e. cmpt 4510 |` cres 5006 |
This theorem is referenced by: offres 6795 lo1resb 13387 o1resb 13389 measinb2 28194 eulerpartgbij 28311 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-opab 4511 df-mpt 4512 df-xp 5010 df-rel 5011 df-res 5016 |
Copyright terms: Public domain | W3C validator |