![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > resoprab | Unicode version |
Description: Restriction of an operation class abstraction. (Contributed by NM, 10-Feb-2007.) |
Ref | Expression |
---|---|
resoprab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resopab 5325 | . . 3 | |
2 | 19.42vv 1777 | . . . . 5 | |
3 | an12 797 | . . . . . . 7 | |
4 | eleq1 2529 | . . . . . . . . . 10 | |
5 | opelxp 5034 | . . . . . . . . . 10 | |
6 | 4, 5 | syl6bb 261 | . . . . . . . . 9 |
7 | 6 | anbi1d 704 | . . . . . . . 8 |
8 | 7 | pm5.32i 637 | . . . . . . 7 |
9 | 3, 8 | bitri 249 | . . . . . 6 |
10 | 9 | 2exbii 1668 | . . . . 5 |
11 | 2, 10 | bitr3i 251 | . . . 4 |
12 | 11 | opabbii 4516 | . . 3 |
13 | 1, 12 | eqtri 2486 | . 2 |
14 | dfoprab2 6343 | . . 3 | |
15 | 14 | reseq1i 5274 | . 2 |
16 | dfoprab2 6343 | . 2 | |
17 | 13, 15, 16 | 3eqtr4i 2496 | 1 |
Colors of variables: wff setvar class |
Syntax hints: /\ wa 369 = wceq 1395
E. wex 1612 e. wcel 1818 <. cop 4035
{ copab 4509 X. cxp 5002
|` cres 5006 { coprab 6297 |
This theorem is referenced by: resoprab2 6399 df1stres 27522 df2ndres 27523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-opab 4511 df-xp 5010 df-rel 5011 df-res 5016 df-oprab 6300 |
Copyright terms: Public domain | W3C validator |