![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > resoprab2 | Unicode version |
Description: Restriction of an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
resoprab2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resoprab 6398 | . 2 | |
2 | anass 649 | . . . 4 | |
3 | an4 824 | . . . . . 6 | |
4 | ssel 3497 | . . . . . . . . 9 | |
5 | 4 | pm4.71d 634 | . . . . . . . 8 |
6 | 5 | bicomd 201 | . . . . . . 7 |
7 | ssel 3497 | . . . . . . . . 9 | |
8 | 7 | pm4.71d 634 | . . . . . . . 8 |
9 | 8 | bicomd 201 | . . . . . . 7 |
10 | 6, 9 | bi2anan9 873 | . . . . . 6 |
11 | 3, 10 | syl5bb 257 | . . . . 5 |
12 | 11 | anbi1d 704 | . . . 4 |
13 | 2, 12 | syl5bbr 259 | . . 3 |
14 | 13 | oprabbidv 6351 | . 2 |
15 | 1, 14 | syl5eq 2510 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 C_ wss 3475
X. cxp 5002 |` cres 5006 { coprab 6297 |
This theorem is referenced by: resmpt2 6400 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-opab 4511 df-xp 5010 df-rel 5011 df-res 5016 df-oprab 6300 |
Copyright terms: Public domain | W3C validator |