![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ressuppss | Unicode version |
Description: The support of the restriction of a function is a subset of the support of the function itself. (Contributed by AV, 22-Apr-2019.) |
Ref | Expression |
---|---|
ressuppss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3686 | . . . . . . . . 9 | |
2 | 1 | simprbi 464 | . . . . . . . 8 |
3 | dmres 5299 | . . . . . . . 8 | |
4 | 2, 3 | eleq2s 2565 | . . . . . . 7 |
5 | 4 | ad2antrl 727 | . . . . . 6 |
6 | snssi 4174 | . . . . . . . . . . . 12 | |
7 | resima2 5312 | . . . . . . . . . . . 12 | |
8 | 6, 7 | syl 16 | . . . . . . . . . . 11 |
9 | 8 | neeq1d 2734 | . . . . . . . . . 10 |
10 | 9 | biimpd 207 | . . . . . . . . 9 |
11 | 10 | adantld 467 | . . . . . . . 8 |
12 | 11 | adantld 467 | . . . . . . 7 |
13 | pm2.24 109 | . . . . . . . . . . . 12 | |
14 | 13 | adantr 465 | . . . . . . . . . . 11 |
15 | 1, 14 | sylbi 195 | . . . . . . . . . 10 |
16 | 15, 3 | eleq2s 2565 | . . . . . . . . 9 |
17 | 16 | ad2antrl 727 | . . . . . . . 8 |
18 | 17 | com12 31 | . . . . . . 7 |
19 | 12, 18 | pm2.61i 164 | . . . . . 6 |
20 | 5, 19 | jca 532 | . . . . 5 |
21 | 20 | ex 434 | . . . 4 |
22 | 21 | ss2abdv 3572 | . . 3 |
23 | df-rab 2816 | . . 3 | |
24 | df-rab 2816 | . . 3 | |
25 | 22, 23, 24 | 3sstr4g 3544 | . 2 |
26 | resexg 5321 | . . 3 | |
27 | suppval 6920 | . . 3 | |
28 | 26, 27 | sylan 471 | . 2 |
29 | suppval 6920 | . 2 | |
30 | 25, 28, 29 | 3sstr4d 3546 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 = wceq 1395 e. wcel 1818
{ cab 2442 =/= wne 2652 { crab 2811
cvv 3109
i^i cin 3474 C_ wss 3475 { csn 4029
dom cdm 5004 |` cres 5006 " cima 5007
(class class class)co 6296 csupp 6918 |
This theorem is referenced by: fsuppres 7874 gsumzres 16914 gsumzadd 16935 gsum2dlem2 16998 tsmsres 20646 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-supp 6919 |
Copyright terms: Public domain | W3C validator |