Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  retbwax2 Unicode version

Theorem retbwax2 1549
 Description: tbw-ax2 1534 rederived from merco1 1546. (Contributed by Anthony Hart, 17-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
retbwax2

Proof of Theorem retbwax2
StepHypRef Expression
1 merco1lem1 1547 . . . 4
2 merco1 1546 . . . 4
31, 2ax-mp 5 . . 3
4 merco1 1546 . . . 4
5 merco1 1546 . . . 4
64, 5ax-mp 5 . . 3
73, 6ax-mp 5 . 2
8 merco1lem1 1547 . . . 4
9 merco1 1546 . . . 4
108, 9ax-mp 5 . . 3
11 merco1 1546 . . . 4
12 merco1 1546 . . . 4
1311, 12ax-mp 5 . . 3
1410, 13ax-mp 5 . 2
157, 14ax-mp 5 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4   wfal 1400 This theorem is referenced by:  merco1lem2  1550  merco1lem3  1551  retbwax3  1556 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 185  df-tru 1398  df-fal 1401
 Copyright terms: Public domain W3C validator