MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reu2eqd Unicode version

Theorem reu2eqd 3296
Description: Deduce equality from restricted uniqueness, deduction version. (Contributed by Thierry Arnoux, 27-Nov-2019.)
Hypotheses
Ref Expression
reu2eqd.1
reu2eqd.2
reu2eqd.3
reu2eqd.4
reu2eqd.5
reu2eqd.6
reu2eqd.7
Assertion
Ref Expression
reu2eqd
Distinct variable groups:   ,   ,   ,   ,   ,

Proof of Theorem reu2eqd
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 reu2eqd.6 . 2
2 reu2eqd.7 . 2
3 reu2eqd.3 . . . . 5
4 reu2 3287 . . . . 5
53, 4sylib 196 . . . 4
65simprd 463 . . 3
7 reu2eqd.4 . . . 4
8 reu2eqd.5 . . . 4
9 nfv 1707 . . . . . . 7
10 nfs1v 2181 . . . . . . 7
119, 10nfan 1928 . . . . . 6
12 nfv 1707 . . . . . 6
1311, 12nfim 1920 . . . . 5
14 nfv 1707 . . . . 5
15 reu2eqd.1 . . . . . . 7
1615anbi1d 704 . . . . . 6
17 eqeq1 2461 . . . . . 6
1816, 17imbi12d 320 . . . . 5
19 nfv 1707 . . . . . . . 8
20 reu2eqd.2 . . . . . . . 8
2119, 20sbhypf 3156 . . . . . . 7
2221anbi2d 703 . . . . . 6
23 eqeq2 2472 . . . . . 6
2422, 23imbi12d 320 . . . . 5
2513, 14, 18, 24rspc2 3218 . . . 4
267, 8, 25syl2anc 661 . . 3
276, 26mpd 15 . 2
281, 2, 27mp2and 679 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  /\wa 369  =wceq 1395  [wsb 1739  e.wcel 1818  A.wral 2807  E.wrex 2808  E!wreu 2809
This theorem is referenced by:  qtophmeo  20318  footeq  24098  mideulem2  24108  lmieq  24157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-rex 2813  df-reu 2814  df-v 3111
  Copyright terms: Public domain W3C validator