![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > reu2eqd | Unicode version |
Description: Deduce equality from restricted uniqueness, deduction version. (Contributed by Thierry Arnoux, 27-Nov-2019.) |
Ref | Expression |
---|---|
reu2eqd.1 | |
reu2eqd.2 | |
reu2eqd.3 | |
reu2eqd.4 | |
reu2eqd.5 | |
reu2eqd.6 | |
reu2eqd.7 |
Ref | Expression |
---|---|
reu2eqd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reu2eqd.6 | . 2 | |
2 | reu2eqd.7 | . 2 | |
3 | reu2eqd.3 | . . . . 5 | |
4 | reu2 3287 | . . . . 5 | |
5 | 3, 4 | sylib 196 | . . . 4 |
6 | 5 | simprd 463 | . . 3 |
7 | reu2eqd.4 | . . . 4 | |
8 | reu2eqd.5 | . . . 4 | |
9 | nfv 1707 | . . . . . . 7 | |
10 | nfs1v 2181 | . . . . . . 7 | |
11 | 9, 10 | nfan 1928 | . . . . . 6 |
12 | nfv 1707 | . . . . . 6 | |
13 | 11, 12 | nfim 1920 | . . . . 5 |
14 | nfv 1707 | . . . . 5 | |
15 | reu2eqd.1 | . . . . . . 7 | |
16 | 15 | anbi1d 704 | . . . . . 6 |
17 | eqeq1 2461 | . . . . . 6 | |
18 | 16, 17 | imbi12d 320 | . . . . 5 |
19 | nfv 1707 | . . . . . . . 8 | |
20 | reu2eqd.2 | . . . . . . . 8 | |
21 | 19, 20 | sbhypf 3156 | . . . . . . 7 |
22 | 21 | anbi2d 703 | . . . . . 6 |
23 | eqeq2 2472 | . . . . . 6 | |
24 | 22, 23 | imbi12d 320 | . . . . 5 |
25 | 13, 14, 18, 24 | rspc2 3218 | . . . 4 |
26 | 7, 8, 25 | syl2anc 661 | . . 3 |
27 | 6, 26 | mpd 15 | . 2 |
28 | 1, 2, 27 | mp2and 679 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 [ wsb 1739
e. wcel 1818 A. wral 2807 E. wrex 2808
E! wreu 2809 |
This theorem is referenced by: qtophmeo 20318 footeq 24098 mideulem2 24108 lmieq 24157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-reu 2814 df-v 3111 |
Copyright terms: Public domain | W3C validator |