![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > reu3 | Unicode version |
Description: A way to express restricted uniqueness. (Contributed by NM, 24-Oct-2006.) |
Ref | Expression |
---|---|
reu3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reurex 3074 | . . 3 | |
2 | reu6 3288 | . . . 4 | |
3 | bi1 186 | . . . . . 6 | |
4 | 3 | ralimi 2850 | . . . . 5 |
5 | 4 | reximi 2925 | . . . 4 |
6 | 2, 5 | sylbi 195 | . . 3 |
7 | 1, 6 | jca 532 | . 2 |
8 | rexex 2914 | . . . 4 | |
9 | 8 | anim2i 569 | . . 3 |
10 | eu3v 2312 | . . . 4 | |
11 | df-reu 2814 | . . . 4 | |
12 | df-rex 2813 | . . . . 5 | |
13 | df-ral 2812 | . . . . . . 7 | |
14 | impexp 446 | . . . . . . . 8 | |
15 | 14 | albii 1640 | . . . . . . 7 |
16 | 13, 15 | bitr4i 252 | . . . . . 6 |
17 | 16 | exbii 1667 | . . . . 5 |
18 | 12, 17 | anbi12i 697 | . . . 4 |
19 | 10, 11, 18 | 3bitr4i 277 | . . 3 |
20 | 9, 19 | sylibr 212 | . 2 |
21 | 7, 20 | impbii 188 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 E. wex 1612
e. wcel 1818 E! weu 2282 A. wral 2807
E. wrex 2808 E! wreu 2809 |
This theorem is referenced by: reu7 3294 2reu4a 32194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-cleq 2449 df-clel 2452 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 |
Copyright terms: Public domain | W3C validator |