![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > reu5 | Unicode version |
Description: Restricted uniqueness in terms of "at most one." (Contributed by NM, 23-May-1999.) (Revised by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
reu5 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eu5 2310 | . 2 | |
2 | df-reu 2814 | . 2 | |
3 | df-rex 2813 | . . 3 | |
4 | df-rmo 2815 | . . 3 | |
5 | 3, 4 | anbi12i 697 | . 2 |
6 | 1, 2, 5 | 3bitr4i 277 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 /\ wa 369
E. wex 1612 e. wcel 1818 E! weu 2282
E* wmo 2283 E. wrex 2808 E! wreu 2809
E* wrmo 2810 |
This theorem is referenced by: reurex 3074 reurmo 3075 reu4 3293 reueq 3297 reusv1 4652 wereu 4880 wereu2 4881 fncnv 5657 moriotass 6286 supeu 7934 resqreu 13086 sqrtneg 13101 sqreu 13193 catideu 15072 poslubd 15778 ismgmid 15891 mndideu 15934 evlseu 18185 frlmup4 18835 ply1divalg 22538 tglinethrueu 24019 foot 24096 mideu 24112 pjhtheu 26312 pjpreeq 26316 cnlnadjeui 26996 cvmliftlem14 28742 cvmlift2lem13 28760 cvmlift3 28773 linethrueu 29806 2reu5a 32182 reuan 32185 2reurex 32186 2rexreu 32190 2reu1 32191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-eu 2286 df-mo 2287 df-rex 2813 df-reu 2814 df-rmo 2815 |
Copyright terms: Public domain | W3C validator |