![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > reu6 | Unicode version |
Description: A way to express restricted uniqueness. (Contributed by NM, 20-Oct-2006.) |
Ref | Expression |
---|---|
reu6 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-reu 2814 | . 2 | |
2 | 19.28v 1767 | . . . . 5 | |
3 | eleq1 2529 | . . . . . . . . . . . 12 | |
4 | sbequ12 1992 | . . . . . . . . . . . 12 | |
5 | 3, 4 | anbi12d 710 | . . . . . . . . . . 11 |
6 | equequ1 1798 | . . . . . . . . . . 11 | |
7 | 5, 6 | bibi12d 321 | . . . . . . . . . 10 |
8 | equid 1791 | . . . . . . . . . . . 12 | |
9 | 8 | tbt 344 | . . . . . . . . . . 11 |
10 | simpl 457 | . . . . . . . . . . 11 | |
11 | 9, 10 | sylbir 213 | . . . . . . . . . 10 |
12 | 7, 11 | syl6bi 228 | . . . . . . . . 9 |
13 | 12 | spimv 2009 | . . . . . . . 8 |
14 | bi1 186 | . . . . . . . . . . . 12 | |
15 | 14 | expdimp 437 | . . . . . . . . . . 11 |
16 | bi2 198 | . . . . . . . . . . . . 13 | |
17 | simpr 461 | . . . . . . . . . . . . 13 | |
18 | 16, 17 | syl6 33 | . . . . . . . . . . . 12 |
19 | 18 | adantr 465 | . . . . . . . . . . 11 |
20 | 15, 19 | impbid 191 | . . . . . . . . . 10 |
21 | 20 | ex 434 | . . . . . . . . 9 |
22 | 21 | sps 1865 | . . . . . . . 8 |
23 | 13, 22 | jca 532 | . . . . . . 7 |
24 | 23 | axc4i 1898 | . . . . . 6 |
25 | bi1 186 | . . . . . . . . . . 11 | |
26 | 25 | imim2i 14 | . . . . . . . . . 10 |
27 | 26 | impd 431 | . . . . . . . . 9 |
28 | 27 | adantl 466 | . . . . . . . 8 |
29 | eleq1a 2540 | . . . . . . . . . . . 12 | |
30 | 29 | adantr 465 | . . . . . . . . . . 11 |
31 | 30 | imp 429 | . . . . . . . . . 10 |
32 | bi2 198 | . . . . . . . . . . . . . 14 | |
33 | 32 | imim2i 14 | . . . . . . . . . . . . 13 |
34 | 33 | com23 78 | . . . . . . . . . . . 12 |
35 | 34 | imp 429 | . . . . . . . . . . 11 |
36 | 35 | adantll 713 | . . . . . . . . . 10 |
37 | 31, 36 | jcai 536 | . . . . . . . . 9 |
38 | 37 | ex 434 | . . . . . . . 8 |
39 | 28, 38 | impbid 191 | . . . . . . 7 |
40 | 39 | alimi 1633 | . . . . . 6 |
41 | 24, 40 | impbii 188 | . . . . 5 |
42 | df-ral 2812 | . . . . . 6 | |
43 | 42 | anbi2i 694 | . . . . 5 |
44 | 2, 41, 43 | 3bitr4i 277 | . . . 4 |
45 | 44 | exbii 1667 | . . 3 |
46 | df-eu 2286 | . . 3 | |
47 | df-rex 2813 | . . 3 | |
48 | 45, 46, 47 | 3bitr4i 277 | . 2 |
49 | 1, 48 | bitri 249 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 E. wex 1612
[ wsb 1739 e. wcel 1818 E! weu 2282
A. wral 2807 E. wrex 2808 E! wreu 2809 |
This theorem is referenced by: reu3 3289 reu6i 3290 reu8 3295 xpf1o 7699 ufileu 20420 isppw2 23389 cusgrafilem2 24480 fgreu 27513 fcnvgreu 27514 fourierdlem50 31939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-cleq 2449 df-clel 2452 df-ral 2812 df-rex 2813 df-reu 2814 |
Copyright terms: Public domain | W3C validator |