![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > reu7 | Unicode version |
Description: Restricted uniqueness using implicit substitution. (Contributed by NM, 24-Oct-2006.) |
Ref | Expression |
---|---|
rmo4.1 |
Ref | Expression |
---|---|
reu7 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reu3 3289 | . 2 | |
2 | rmo4.1 | . . . . . . 7 | |
3 | equequ1 1798 | . . . . . . . 8 | |
4 | equcom 1794 | . . . . . . . 8 | |
5 | 3, 4 | syl6bb 261 | . . . . . . 7 |
6 | 2, 5 | imbi12d 320 | . . . . . 6 |
7 | 6 | cbvralv 3084 | . . . . 5 |
8 | 7 | rexbii 2959 | . . . 4 |
9 | equequ1 1798 | . . . . . . 7 | |
10 | 9 | imbi2d 316 | . . . . . 6 |
11 | 10 | ralbidv 2896 | . . . . 5 |
12 | 11 | cbvrexv 3085 | . . . 4 |
13 | 8, 12 | bitri 249 | . . 3 |
14 | 13 | anbi2i 694 | . 2 |
15 | 1, 14 | bitri 249 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wral 2807 E. wrex 2808
E! wreu 2809 |
This theorem is referenced by: cshwrepswhash1 14587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 |
Copyright terms: Public domain | W3C validator |