![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > reu8 | Unicode version |
Description: Restricted uniqueness using implicit substitution. (Contributed by NM, 24-Oct-2006.) |
Ref | Expression |
---|---|
rmo4.1 |
Ref | Expression |
---|---|
reu8 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rmo4.1 | . . 3 | |
2 | 1 | cbvreuv 3086 | . 2 |
3 | reu6 3288 | . 2 | |
4 | dfbi2 628 | . . . . 5 | |
5 | 4 | ralbii 2888 | . . . 4 |
6 | ancom 450 | . . . . . 6 | |
7 | equcom 1794 | . . . . . . . . . 10 | |
8 | 7 | imbi2i 312 | . . . . . . . . 9 |
9 | 8 | ralbii 2888 | . . . . . . . 8 |
10 | 9 | a1i 11 | . . . . . . 7 |
11 | biimt 335 | . . . . . . . 8 | |
12 | df-ral 2812 | . . . . . . . . 9 | |
13 | bi2.04 361 | . . . . . . . . . 10 | |
14 | 13 | albii 1640 | . . . . . . . . 9 |
15 | vex 3112 | . . . . . . . . . 10 | |
16 | eleq1 2529 | . . . . . . . . . . . . 13 | |
17 | 16, 1 | imbi12d 320 | . . . . . . . . . . . 12 |
18 | 17 | bicomd 201 | . . . . . . . . . . 11 |
19 | 18 | equcoms 1795 | . . . . . . . . . 10 |
20 | 15, 19 | ceqsalv 3137 | . . . . . . . . 9 |
21 | 12, 14, 20 | 3bitrri 272 | . . . . . . . 8 |
22 | 11, 21 | syl6bb 261 | . . . . . . 7 |
23 | 10, 22 | anbi12d 710 | . . . . . 6 |
24 | 6, 23 | syl5bb 257 | . . . . 5 |
25 | r19.26 2984 | . . . . 5 | |
26 | 24, 25 | syl6rbbr 264 | . . . 4 |
27 | 5, 26 | syl5bb 257 | . . 3 |
28 | 27 | rexbiia 2958 | . 2 |
29 | 2, 3, 28 | 3bitri 271 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 e. wcel 1818
A. wral 2807 E. wrex 2808 E! wreu 2809 |
This theorem is referenced by: reuccats1 12706 reumodprminv 14329 grpinveu 16084 grpoideu 25211 grpoinveu 25224 cvmlift3lem2 28765 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-clab 2443 df-cleq 2449 df-clel 2452 df-ral 2812 df-rex 2813 df-reu 2814 df-v 3111 |
Copyright terms: Public domain | W3C validator |