MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reu8 Unicode version

Theorem reu8 3295
Description: Restricted uniqueness using implicit substitution. (Contributed by NM, 24-Oct-2006.)
Hypothesis
Ref Expression
rmo4.1
Assertion
Ref Expression
reu8
Distinct variable groups:   , ,   ,   ,

Proof of Theorem reu8
StepHypRef Expression
1 rmo4.1 . . 3
21cbvreuv 3086 . 2
3 reu6 3288 . 2
4 dfbi2 628 . . . . 5
54ralbii 2888 . . . 4
6 ancom 450 . . . . . 6
7 equcom 1794 . . . . . . . . . 10
87imbi2i 312 . . . . . . . . 9
98ralbii 2888 . . . . . . . 8
109a1i 11 . . . . . . 7
11 biimt 335 . . . . . . . 8
12 df-ral 2812 . . . . . . . . 9
13 bi2.04 361 . . . . . . . . . 10
1413albii 1640 . . . . . . . . 9
15 vex 3112 . . . . . . . . . 10
16 eleq1 2529 . . . . . . . . . . . . 13
1716, 1imbi12d 320 . . . . . . . . . . . 12
1817bicomd 201 . . . . . . . . . . 11
1918equcoms 1795 . . . . . . . . . 10
2015, 19ceqsalv 3137 . . . . . . . . 9
2112, 14, 203bitrri 272 . . . . . . . 8
2211, 21syl6bb 261 . . . . . . 7
2310, 22anbi12d 710 . . . . . 6
246, 23syl5bb 257 . . . . 5
25 r19.26 2984 . . . . 5
2624, 25syl6rbbr 264 . . . 4
275, 26syl5bb 257 . . 3
2827rexbiia 2958 . 2
292, 3, 283bitri 271 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  /\wa 369  A.wal 1393  e.wcel 1818  A.wral 2807  E.wrex 2808  E!wreu 2809
This theorem is referenced by:  reuccats1  12706  reumodprminv  14329  grpinveu  16084  grpoideu  25211  grpoinveu  25224  cvmlift3lem2  28765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-clab 2443  df-cleq 2449  df-clel 2452  df-ral 2812  df-rex 2813  df-reu 2814  df-v 3111
  Copyright terms: Public domain W3C validator