![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > reubida | Unicode version |
Description: Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by Mario Carneiro, 19-Nov-2016.) |
Ref | Expression |
---|---|
reubida.1 | |
reubida.2 |
Ref | Expression |
---|---|
reubida |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reubida.1 | . . 3 | |
2 | reubida.2 | . . . 4 | |
3 | 2 | pm5.32da 641 | . . 3 |
4 | 1, 3 | eubid 2302 | . 2 |
5 | df-reu 2814 | . 2 | |
6 | df-reu 2814 | . 2 | |
7 | 4, 5, 6 | 3bitr4g 288 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 F/ wnf 1616 e. wcel 1818
E! weu 2282 E! wreu 2809 |
This theorem is referenced by: reubidva 3041 reuan 32185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-12 1854 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 df-eu 2286 df-reu 2814 |
Copyright terms: Public domain | W3C validator |