![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > reuccats1lem | Unicode version |
Description: Lemma for reuccats1 12706. (Contributed by Alexander van der Vekens, 5-Oct-2018.) (Proof shortened by AV, 15-Jan-2020.) |
Ref | Expression |
---|---|
reuccats1lem |
S
, , ,, ,, ,,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2529 | . . . . . . . . 9 | |
2 | fveq2 5871 | . . . . . . . . . 10 | |
3 | 2 | eqeq1d 2459 | . . . . . . . . 9 |
4 | 1, 3 | anbi12d 710 | . . . . . . . 8 |
5 | 4 | rspcv 3206 | . . . . . . 7 |
6 | 5 | adantl 466 | . . . . . 6 |
7 | simpl 457 | . . . . . . . . . . 11 | |
8 | 7 | adantr 465 | . . . . . . . . . 10 |
9 | simpl 457 | . . . . . . . . . . 11 | |
10 | 9 | adantl 466 | . . . . . . . . . 10 |
11 | simprr 757 | . . . . . . . . . 10 | |
12 | ccats1swrdeqrex 12704 | . . . . . . . . . 10 | |
13 | 8, 10, 11, 12 | syl3anc 1228 | . . . . . . . . 9 |
14 | s1eq 12612 | . . . . . . . . . . . . . . . . . 18 | |
15 | 14 | oveq2d 6312 | . . . . . . . . . . . . . . . . 17 |
16 | 15 | eleq1d 2526 | . . . . . . . . . . . . . . . 16 |
17 | eqeq2 2472 | . . . . . . . . . . . . . . . 16 | |
18 | 16, 17 | imbi12d 320 | . . . . . . . . . . . . . . 15 |
19 | 18 | rspcv 3206 | . . . . . . . . . . . . . 14 |
20 | eleq1 2529 | . . . . . . . . . . . . . . . . . 18 | |
21 | 20 | biimpac 486 | . . . . . . . . . . . . . . . . 17 |
22 | s1eq 12612 | . . . . . . . . . . . . . . . . . . . . . . . 24 | |
23 | 22 | eqcoms 2469 | . . . . . . . . . . . . . . . . . . . . . . 23 |
24 | 23 | oveq2d 6312 | . . . . . . . . . . . . . . . . . . . . . 22 |
25 | 24 | eqeq2d 2471 | . . . . . . . . . . . . . . . . . . . . 21 |
26 | 25 | biimpd 207 | . . . . . . . . . . . . . . . . . . . 20 |
27 | 26 | imim2i 14 | . . . . . . . . . . . . . . . . . . 19 |
28 | 27 | com13 80 | . . . . . . . . . . . . . . . . . 18 |
29 | 28 | adantl 466 | . . . . . . . . . . . . . . . . 17 |
30 | 21, 29 | mpd 15 | . . . . . . . . . . . . . . . 16 |
31 | 30 | ex 434 | . . . . . . . . . . . . . . 15 |
32 | 31 | com23 78 | . . . . . . . . . . . . . 14 |
33 | 19, 32 | sylan9r 658 | . . . . . . . . . . . . 13 |
34 | 33 | com23 78 | . . . . . . . . . . . 12 |
35 | 34 | rexlimdva 2949 | . . . . . . . . . . 11 |
36 | 35 | adantl 466 | . . . . . . . . . 10 |
37 | 36 | adantr 465 | . . . . . . . . 9 |
38 | 13, 37 | syld 44 | . . . . . . . 8 |
39 | 38 | com23 78 | . . . . . . 7 |
40 | 39 | ex 434 | . . . . . 6 |
41 | 6, 40 | syld 44 | . . . . 5 |
42 | 41 | com23 78 | . . . 4 |
43 | 42 | impd 431 | . . 3 |
44 | 43 | 3adant3 1016 | . 2 |
45 | 44 | imp 429 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 = wceq 1395 e. wcel 1818
A. wral 2807 E. wrex 2808 <. cop 4035
` cfv 5593 (class class class)co 6296
0 cc0 9513 1 c1 9514 caddc 9516 chash 12405 Word cword 12534 cconcat 12536 <" cs1 12537
csubstr 12538 |
This theorem is referenced by: reuccats1 12706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-card 8341 df-cda 8569 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-nn 10562 df-2 10619 df-n0 10821 df-z 10890 df-uz 11111 df-fz 11702 df-fzo 11825 df-hash 12406 df-word 12542 df-lsw 12543 df-concat 12544 df-s1 12545 df-substr 12546 |
Copyright terms: Public domain | W3C validator |