![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > reuhypd | Unicode version |
Description: A theorem useful for eliminating the restricted existential uniqueness hypotheses in riotaxfrd 6288. (Contributed by NM, 16-Jan-2012.) |
Ref | Expression |
---|---|
reuhypd.1 | |
reuhypd.2 |
Ref | Expression |
---|---|
reuhypd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reuhypd.1 | . . . . 5 | |
2 | elex 3118 | . . . . 5 | |
3 | 1, 2 | syl 16 | . . . 4 |
4 | eueq 3271 | . . . 4 | |
5 | 3, 4 | sylib 196 | . . 3 |
6 | eleq1 2529 | . . . . . . 7 | |
7 | 1, 6 | syl5ibrcom 222 | . . . . . 6 |
8 | 7 | pm4.71rd 635 | . . . . 5 |
9 | reuhypd.2 | . . . . . . 7 | |
10 | 9 | 3expa 1196 | . . . . . 6 |
11 | 10 | pm5.32da 641 | . . . . 5 |
12 | 8, 11 | bitr4d 256 | . . . 4 |
13 | 12 | eubidv 2304 | . . 3 |
14 | 5, 13 | mpbid 210 | . 2 |
15 | df-reu 2814 | . 2 | |
16 | 14, 15 | sylibr 212 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 E! weu 2282 E! wreu 2809
cvv 3109 |
This theorem is referenced by: reuhyp 4680 riotaocN 34934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-reu 2814 df-v 3111 |
Copyright terms: Public domain | W3C validator |