![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > reuind | Unicode version |
Description: Existential uniqueness via an indirect equality. (Contributed by NM, 16-Oct-2010.) |
Ref | Expression |
---|---|
reuind.1 | |
reuind.2 |
Ref | Expression |
---|---|
reuind |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reuind.2 | . . . . . . . 8 | |
2 | 1 | eleq1d 2526 | . . . . . . 7 |
3 | reuind.1 | . . . . . . 7 | |
4 | 2, 3 | anbi12d 710 | . . . . . 6 |
5 | 4 | cbvexv 2024 | . . . . 5 |
6 | r19.41v 3009 | . . . . . . 7 | |
7 | 6 | exbii 1667 | . . . . . 6 |
8 | rexcom4 3129 | . . . . . 6 | |
9 | risset 2982 | . . . . . . . 8 | |
10 | 9 | anbi1i 695 | . . . . . . 7 |
11 | 10 | exbii 1667 | . . . . . 6 |
12 | 7, 8, 11 | 3bitr4ri 278 | . . . . 5 |
13 | 5, 12 | bitri 249 | . . . 4 |
14 | eqeq2 2472 | . . . . . . . . . 10 | |
15 | 14 | imim2i 14 | . . . . . . . . 9 |
16 | bi2 198 | . . . . . . . . . . 11 | |
17 | 16 | imim2i 14 | . . . . . . . . . 10 |
18 | an31 800 | . . . . . . . . . . . 12 | |
19 | 18 | imbi1i 325 | . . . . . . . . . . 11 |
20 | impexp 446 | . . . . . . . . . . 11 | |
21 | impexp 446 | . . . . . . . . . . 11 | |
22 | 19, 20, 21 | 3bitr3i 275 | . . . . . . . . . 10 |
23 | 17, 22 | sylib 196 | . . . . . . . . 9 |
24 | 15, 23 | syl 16 | . . . . . . . 8 |
25 | 24 | 2alimi 1634 | . . . . . . 7 |
26 | 19.23v 1760 | . . . . . . . . . 10 | |
27 | an12 797 | . . . . . . . . . . . . . 14 | |
28 | eleq1 2529 | . . . . . . . . . . . . . . . 16 | |
29 | 28 | adantr 465 | . . . . . . . . . . . . . . 15 |
30 | 29 | pm5.32ri 638 | . . . . . . . . . . . . . 14 |
31 | 27, 30 | bitr4i 252 | . . . . . . . . . . . . 13 |
32 | 31 | exbii 1667 | . . . . . . . . . . . 12 |
33 | 19.42v 1775 | . . . . . . . . . . . 12 | |
34 | 32, 33 | bitri 249 | . . . . . . . . . . 11 |
35 | 34 | imbi1i 325 | . . . . . . . . . 10 |
36 | 26, 35 | bitri 249 | . . . . . . . . 9 |
37 | 36 | albii 1640 | . . . . . . . 8 |
38 | 19.21v 1729 | . . . . . . . 8 | |
39 | 37, 38 | bitri 249 | . . . . . . 7 |
40 | 25, 39 | sylib 196 | . . . . . 6 |
41 | 40 | expd 436 | . . . . 5 |
42 | 41 | reximdvai 2929 | . . . 4 |
43 | 13, 42 | syl5bi 217 | . . 3 |
44 | 43 | imp 429 | . 2 |
45 | pm4.24 643 | . . . . . . . . 9 | |
46 | 45 | biimpi 194 | . . . . . . . 8 |
47 | prth 571 | . . . . . . . 8 | |
48 | eqtr3 2485 | . . . . . . . 8 | |
49 | 46, 47, 48 | syl56 34 | . . . . . . 7 |
50 | 49 | alanimi 1637 | . . . . . 6 |
51 | 19.23v 1760 | . . . . . . . 8 | |
52 | 51 | biimpi 194 | . . . . . . 7 |
53 | 52 | com12 31 | . . . . . 6 |
54 | 50, 53 | syl5 32 | . . . . 5 |
55 | 54 | a1d 25 | . . . 4 |
56 | 55 | ralrimivv 2877 | . . 3 |
57 | 56 | adantl 466 | . 2 |
58 | eqeq1 2461 | . . . . 5 | |
59 | 58 | imbi2d 316 | . . . 4 |
60 | 59 | albidv 1713 | . . 3 |
61 | 60 | reu4 3293 | . 2 |
62 | 44, 57, 61 | sylanbrc 664 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 = wceq 1395
E. wex 1612 e. wcel 1818 A. wral 2807
E. wrex 2808 E! wreu 2809 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-v 3111 |
Copyright terms: Public domain | W3C validator |