![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > reumodprminv | Unicode version |
Description: For any prime number and for any positive integer less than this prime number, there is a unique modular inverse of this positive integer. (Contributed by Alexander van der Vekens, 12-May-2018.) |
Ref | Expression |
---|---|
reumodprminv |
N
P
,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 457 | . . . 4 | |
2 | elfzoelz 11829 | . . . . 5 | |
3 | 2 | adantl 466 | . . . 4 |
4 | prmnn 14220 | . . . . . . 7 | |
5 | 4 | adantr 465 | . . . . . 6 |
6 | prmz 14221 | . . . . . . . . 9 | |
7 | fzoval 11830 | . . . . . . . . 9 | |
8 | 6, 7 | syl 16 | . . . . . . . 8 |
9 | 8 | eleq2d 2527 | . . . . . . 7 |
10 | 9 | biimpa 484 | . . . . . 6 |
11 | 5, 10 | jca 532 | . . . . 5 |
12 | fzm1ndvds 14038 | . . . . 5 | |
13 | 11, 12 | syl 16 | . . . 4 |
14 | eqid 2457 | . . . . . . 7 | |
15 | 14 | modprminv 14326 | . . . . . 6 |
16 | 15 | simpld 459 | . . . . 5 |
17 | 15 | simprd 463 | . . . . . 6 |
18 | 1eluzge0 11153 | . . . . . . . . . . . 12 | |
19 | fzss1 11751 | . . . . . . . . . . . 12 | |
20 | 18, 19 | mp1i 12 | . . . . . . . . . . 11 |
21 | 20 | sseld 3502 | . . . . . . . . . 10 |
22 | 21 | 3ad2ant1 1017 | . . . . . . . . 9 |
23 | 22 | imdistani 690 | . . . . . . . 8 |
24 | 14 | modprminveq 14327 | . . . . . . . . . . 11 |
25 | 24 | biimpa 484 | . . . . . . . . . 10 |
26 | 25 | eqcomd 2465 | . . . . . . . . 9 |
27 | 26 | expr 615 | . . . . . . . 8 |
28 | 23, 27 | syl 16 | . . . . . . 7 |
29 | 28 | ralrimiva 2871 | . . . . . 6 |
30 | 17, 29 | jca 532 | . . . . 5 |
31 | 16, 30 | jca 532 | . . . 4 |
32 | 1, 3, 13, 31 | syl3anc 1228 | . . 3 |
33 | oveq2 6304 | . . . . . . 7 | |
34 | 33 | oveq1d 6311 | . . . . . 6 |
35 | 34 | eqeq1d 2459 | . . . . 5 |
36 | eqeq1 2461 | . . . . . . 7 | |
37 | 36 | imbi2d 316 | . . . . . 6 |
38 | 37 | ralbidv 2896 | . . . . 5 |
39 | 35, 38 | anbi12d 710 | . . . 4 |
40 | 39 | rspcev 3210 | . . 3 |
41 | 32, 40 | syl 16 | . 2 |
42 | oveq2 6304 | . . . . 5 | |
43 | 42 | oveq1d 6311 | . . . 4 |
44 | 43 | eqeq1d 2459 | . . 3 |
45 | 44 | reu8 3295 | . 2 |
46 | 41, 45 | sylibr 212 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 A. wral 2807 E. wrex 2808
E! wreu 2809 C_ wss 3475 class class class wbr 4452
` cfv 5593 (class class class)co 6296
0 cc0 9513 1 c1 9514 cmul 9518 cmin 9828 cn 10561 2 c2 10610 cz 10889 cuz 11110
cfz 11701 cfzo 11824 cmo 11996 cexp 12166 cdvds 13986 cprime 14217 |
This theorem is referenced by: modprm0 14330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-2o 7150 df-oadd 7153 df-er 7330 df-map 7441 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-sup 7921 df-card 8341 df-cda 8569 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-3 10620 df-n0 10821 df-z 10890 df-uz 11111 df-rp 11250 df-fz 11702 df-fzo 11825 df-fl 11929 df-mod 11997 df-seq 12108 df-exp 12167 df-hash 12406 df-cj 12932 df-re 12933 df-im 12934 df-sqrt 13068 df-abs 13069 df-dvds 13987 df-gcd 14145 df-prm 14218 df-phi 14296 |
Copyright terms: Public domain | W3C validator |