![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > reupick | Unicode version |
Description: Restricted uniqueness "picks" a member of a subclass. (Contributed by NM, 21-Aug-1999.) |
Ref | Expression |
---|---|
reupick |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3497 | . . 3 | |
2 | 1 | ad2antrr 725 | . 2 |
3 | df-rex 2813 | . . . . . 6 | |
4 | df-reu 2814 | . . . . . 6 | |
5 | 3, 4 | anbi12i 697 | . . . . 5 |
6 | 1 | ancrd 554 | . . . . . . . . . . 11 |
7 | 6 | anim1d 564 | . . . . . . . . . 10 |
8 | an32 798 | . . . . . . . . . 10 | |
9 | 7, 8 | syl6ib 226 | . . . . . . . . 9 |
10 | 9 | eximdv 1710 | . . . . . . . 8 |
11 | eupick 2358 | . . . . . . . . 9 | |
12 | 11 | ex 434 | . . . . . . . 8 |
13 | 10, 12 | syl9 71 | . . . . . . 7 |
14 | 13 | com23 78 | . . . . . 6 |
15 | 14 | imp32 433 | . . . . 5 |
16 | 5, 15 | sylan2b 475 | . . . 4 |
17 | 16 | expcomd 438 | . . 3 |
18 | 17 | imp 429 | . 2 |
19 | 2, 18 | impbid 191 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 E. wex 1612 e. wcel 1818
E! weu 2282 E. wrex 2808 E! wreu 2809
C_ wss 3475 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-rex 2813 df-reu 2814 df-in 3482 df-ss 3489 |
Copyright terms: Public domain | W3C validator |