Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  reupick3 Unicode version

Theorem reupick3 3782
 Description: Restricted uniqueness "picks" a member of a subclass. (Contributed by Mario Carneiro, 19-Nov-2016.)
Assertion
Ref Expression
reupick3
Distinct variable group:   ,

Proof of Theorem reupick3
StepHypRef Expression
1 df-reu 2814 . . . 4
2 df-rex 2813 . . . . 5
3 anass 649 . . . . . 6
43exbii 1667 . . . . 5
52, 4bitr4i 252 . . . 4
6 eupick 2358 . . . 4
71, 5, 6syl2anb 479 . . 3
87expd 436 . 2
983impia 1193 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  /\wa 369  /\w3a 973  E.wex 1612  e.wcel 1818  E!weu 2282  E.wrex 2808  E!wreu 2809 This theorem is referenced by:  reupick2  3783 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-12 1854  ax-13 1999 This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 975  df-ex 1613  df-nf 1617  df-eu 2286  df-mo 2287  df-rex 2813  df-reu 2814
 Copyright terms: Public domain W3C validator