![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > reusv2lem3 | Unicode version |
Description: Lemma for reusv2 4658. (Contributed by NM, 14-Dec-2012.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) |
Ref | Expression |
---|---|
reusv2lem3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 461 | . . . 4 | |
2 | nfv 1707 | . . . . . 6 | |
3 | nfeu1 2294 | . . . . . 6 | |
4 | 2, 3 | nfan 1928 | . . . . 5 |
5 | euex 2308 | . . . . . . . . 9 | |
6 | rexn0 3932 | . . . . . . . . . 10 | |
7 | 6 | exlimiv 1722 | . . . . . . . . 9 |
8 | 5, 7 | syl 16 | . . . . . . . 8 |
9 | 8 | adantl 466 | . . . . . . 7 |
10 | r19.2z 3918 | . . . . . . . 8 | |
11 | 10 | ex 434 | . . . . . . 7 |
12 | 9, 11 | syl 16 | . . . . . 6 |
13 | nfra1 2838 | . . . . . . . 8 | |
14 | nfre1 2918 | . . . . . . . . 9 | |
15 | 14 | nfeu 2300 | . . . . . . . 8 |
16 | 13, 15 | nfan 1928 | . . . . . . 7 |
17 | simplr 755 | . . . . . . . . . 10 | |
18 | simpr 461 | . . . . . . . . . . 11 | |
19 | rsp 2823 | . . . . . . . . . . . . . 14 | |
20 | 19 | adantr 465 | . . . . . . . . . . . . 13 |
21 | 20 | imp 429 | . . . . . . . . . . . 12 |
22 | isset 3113 | . . . . . . . . . . . 12 | |
23 | 21, 22 | sylib 196 | . . . . . . . . . . 11 |
24 | rspe 2915 | . . . . . . . . . . . . . 14 | |
25 | 24 | ex 434 | . . . . . . . . . . . . 13 |
26 | 25 | ancrd 554 | . . . . . . . . . . . 12 |
27 | 26 | eximdv 1710 | . . . . . . . . . . 11 |
28 | 18, 23, 27 | sylc 60 | . . . . . . . . . 10 |
29 | eupick 2358 | . . . . . . . . . 10 | |
30 | 17, 28, 29 | syl2anc 661 | . . . . . . . . 9 |
31 | 30 | ex 434 | . . . . . . . 8 |
32 | 31 | com23 78 | . . . . . . 7 |
33 | 16, 14, 32 | ralrimd 2861 | . . . . . 6 |
34 | 12, 33 | impbid 191 | . . . . 5 |
35 | 4, 34 | eubid 2302 | . . . 4 |
36 | 1, 35 | mpbird 232 | . . 3 |
37 | 36 | ex 434 | . 2 |
38 | reusv2lem2 4654 | . 2 | |
39 | 37, 38 | impbid1 203 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 E. wex 1612
e. wcel 1818 E! weu 2282 =/= wne 2652
A. wral 2807 E. wrex 2808 cvv 3109
c0 3784 |
This theorem is referenced by: reusv2lem4 4656 eusv4 4661 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-nul 4581 ax-pow 4630 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-v 3111 df-dif 3478 df-nul 3785 |
Copyright terms: Public domain | W3C validator |