![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > reusv2lem4 | Unicode version |
Description: Lemma for reusv2 4658. (Contributed by NM, 13-Dec-2012.) |
Ref | Expression |
---|---|
reusv2lem4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-reu 2814 | . 2 | |
2 | anass 649 | . . . . . 6 | |
3 | rabid 3034 | . . . . . . 7 | |
4 | 3 | anbi1i 695 | . . . . . 6 |
5 | anass 649 | . . . . . . . 8 | |
6 | eleq1 2529 | . . . . . . . . . 10 | |
7 | 6 | anbi1d 704 | . . . . . . . . 9 |
8 | 7 | pm5.32ri 638 | . . . . . . . 8 |
9 | 5, 8 | bitr3i 251 | . . . . . . 7 |
10 | 9 | anbi2i 694 | . . . . . 6 |
11 | 2, 4, 10 | 3bitr4ri 278 | . . . . 5 |
12 | 11 | rexbii2 2957 | . . . 4 |
13 | r19.42v 3012 | . . . 4 | |
14 | nfrab1 3038 | . . . . 5 | |
15 | nfcv 2619 | . . . . 5 | |
16 | nfv 1707 | . . . . 5 | |
17 | nfcsb1v 3450 | . . . . . 6 | |
18 | 17 | nfeq2 2636 | . . . . 5 |
19 | csbeq1a 3443 | . . . . . 6 | |
20 | 19 | eqeq2d 2471 | . . . . 5 |
21 | 14, 15, 16, 18, 20 | cbvrexf 3079 | . . . 4 |
22 | 12, 13, 21 | 3bitr3i 275 | . . 3 |
23 | 22 | eubii 2306 | . 2 |
24 | elex 3118 | . . . . . . . 8 | |
25 | 24 | ad2antrl 727 | . . . . . . 7 |
26 | 3, 25 | sylbi 195 | . . . . . 6 |
27 | 26 | rgen 2817 | . . . . 5 |
28 | nfv 1707 | . . . . . 6 | |
29 | 17 | nfel1 2635 | . . . . . 6 |
30 | 19 | eleq1d 2526 | . . . . . 6 |
31 | 14, 15, 28, 29, 30 | cbvralf 3078 | . . . . 5 |
32 | 27, 31 | mpbi 208 | . . . 4 |
33 | reusv2lem3 4655 | . . . 4 | |
34 | 32, 33 | ax-mp 5 | . . 3 |
35 | df-ral 2812 | . . . . 5 | |
36 | nfv 1707 | . . . . . 6 | |
37 | 14 | nfcri 2612 | . . . . . . 7 |
38 | 37, 18 | nfim 1920 | . . . . . 6 |
39 | eleq1 2529 | . . . . . . 7 | |
40 | 39, 20 | imbi12d 320 | . . . . . 6 |
41 | 36, 38, 40 | cbval 2021 | . . . . 5 |
42 | 3 | imbi1i 325 | . . . . . . . 8 |
43 | impexp 446 | . . . . . . . 8 | |
44 | 42, 43 | bitri 249 | . . . . . . 7 |
45 | 44 | albii 1640 | . . . . . 6 |
46 | df-ral 2812 | . . . . . 6 | |
47 | 45, 46 | bitr4i 252 | . . . . 5 |
48 | 35, 41, 47 | 3bitr2i 273 | . . . 4 |
49 | 48 | eubii 2306 | . . 3 |
50 | 34, 49 | bitri 249 | . 2 |
51 | 1, 23, 50 | 3bitri 271 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 = wceq 1395
e. wcel 1818 E! weu 2282 A. wral 2807
E. wrex 2808 E! wreu 2809 { crab 2811
cvv 3109
[_ csb 3434 |
This theorem is referenced by: reusv2lem5 4657 reusv7OLD 4664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-nul 4581 ax-pow 4630 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-nul 3785 |
Copyright terms: Public domain | W3C validator |