![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > reusv5OLD | Unicode version |
Description: Two ways to express
single-valuedness of a class expression
( ) . (Contributed
by NM, 16-Dec-2012.)
(Proof modification is discouraged.) (New usage is
discouraged.) |
Ref | Expression |
---|---|
reusv5OLD |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equid 1791 | . . . . 5 | |
2 | 1 | biantru 505 | . . . 4 |
3 | 2 | exbii 1667 | . . 3 |
4 | n0 3794 | . . 3 | |
5 | df-rex 2813 | . . 3 | |
6 | 3, 4, 5 | 3bitr4i 277 | . 2 |
7 | reusv1 4652 | . . 3 | |
8 | 1 | a1bi 337 | . . . . 5 |
9 | 8 | ralbii 2888 | . . . 4 |
10 | 9 | reubii 3044 | . . 3 |
11 | 9 | rexbii 2959 | . . 3 |
12 | 7, 10, 11 | 3bitr4g 288 | . 2 |
13 | 6, 12 | sylbi 195 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 E. wex 1612
e. wcel 1818 =/= wne 2652 A. wral 2807
E. wrex 2808 E! wreu 2809 c0 3784 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-v 3111 df-dif 3478 df-nul 3785 |
Copyright terms: Public domain | W3C validator |