Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  reusv5OLD Unicode version

Theorem reusv5OLD 4662
 Description: Two ways to express single-valuedness of a class expression ( ). (Contributed by NM, 16-Dec-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
reusv5OLD
Distinct variable groups:   ,   ,,   ,

Proof of Theorem reusv5OLD
StepHypRef Expression
1 equid 1791 . . . . 5
21biantru 505 . . . 4
32exbii 1667 . . 3
4 n0 3794 . . 3
5 df-rex 2813 . . 3
63, 4, 53bitr4i 277 . 2
7 reusv1 4652 . . 3
81a1bi 337 . . . . 5
98ralbii 2888 . . . 4
109reubii 3044 . . 3
119rexbii 2959 . . 3
127, 10, 113bitr4g 288 . 2
136, 12sylbi 195 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  <->wb 184  /\wa 369  =wceq 1395  E.wex 1612  e.wcel 1818  =/=wne 2652  A.wral 2807  E.wrex 2808  E!wreu 2809   c0 3784 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-v 3111  df-dif 3478  df-nul 3785
 Copyright terms: Public domain W3C validator