![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > reusv7OLD | Unicode version |
Description: Two ways to express
single-valuedness of a class expression
( ) . Note that
means is a singleton
(uniintsn 4324). (Contributed by NM, 14-Dec-2012.)
(Proof modification is discouraged.) (New usage is
discouraged.) |
Ref | Expression |
---|---|
reusv7.1 |
Ref | Expression |
---|---|
reusv7OLD |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq 3054 | . . . . . . . . 9 | |
2 | 1 | reubidv 3042 | . . . . . . . 8 |
3 | df-reu 2814 | . . . . . . . . 9 | |
4 | uniintsn 4324 | . . . . . . . . . 10 | |
5 | eusn 4106 | . . . . . . . . . 10 | |
6 | ral0 3934 | . . . . . . . . . . . 12 | |
7 | 6 | biantru 505 | . . . . . . . . . . 11 |
8 | 7 | eubii 2306 | . . . . . . . . . 10 |
9 | 4, 5, 8 | 3bitr2i 273 | . . . . . . . . 9 |
10 | 3, 9 | bitr4i 252 | . . . . . . . 8 |
11 | 2, 10 | syl6bb 261 | . . . . . . 7 |
12 | 11 | necon3bbid 2704 | . . . . . 6 |
13 | 12 | biimprd 223 | . . . . 5 |
14 | reurex 3074 | . . . . . . 7 | |
15 | rexn0 3932 | . . . . . . . 8 | |
16 | 15 | rexlimivw 2946 | . . . . . . 7 |
17 | 14, 16 | syl 16 | . . . . . 6 |
18 | 17 | necon2bi 2694 | . . . . 5 |
19 | 13, 18 | jctild 543 | . . . 4 |
20 | pm5.21 858 | . . . 4 | |
21 | 19, 20 | syl6 33 | . . 3 |
22 | r19.28zv 3924 | . . . . . 6 | |
23 | 22 | eubidv 2304 | . . . . 5 |
24 | reusv2lem4 4656 | . . . . . 6 | |
25 | equid 1791 | . . . . . . . . 9 | |
26 | 25 | biantrur 506 | . . . . . . . 8 |
27 | 26 | rexbii 2959 | . . . . . . 7 |
28 | 27 | reubii 3044 | . . . . . 6 |
29 | reusv7.1 | . . . . . . . . . . . 12 | |
30 | 29 | biantrurd 508 | . . . . . . . . . . 11 |
31 | eleq1 2529 | . . . . . . . . . . . 12 | |
32 | 31 | pm5.32ri 638 | . . . . . . . . . . 11 |
33 | 30, 32 | syl6rbbr 264 | . . . . . . . . . 10 |
34 | biimt 335 | . . . . . . . . . . 11 | |
35 | 29, 34 | syl 16 | . . . . . . . . . 10 |
36 | 33, 35 | bitrd 253 | . . . . . . . . 9 |
37 | 25 | biantru 505 | . . . . . . . . . 10 |
38 | 37 | imbi1i 325 | . . . . . . . . 9 |
39 | 36, 38 | syl6bb 261 | . . . . . . . 8 |
40 | 39 | ralbiia 2887 | . . . . . . 7 |
41 | 40 | eubii 2306 | . . . . . 6 |
42 | 24, 28, 41 | 3bitr4i 277 | . . . . 5 |
43 | df-reu 2814 | . . . . 5 | |
44 | 23, 42, 43 | 3bitr4g 288 | . . . 4 |
45 | 44 | a1d 25 | . . 3 |
46 | 21, 45 | pm2.61ine 2770 | . 2 |
47 | 46, 44 | jaoi 379 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 \/ wo 368 /\ wa 369
= wceq 1395 E. wex 1612 e. wcel 1818
E! weu 2282 =/= wne 2652 A. wral 2807
E. wrex 2808 E! wreu 2809 c0 3784 { csn 4029 U. cuni 4249
|^| cint 4286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-nul 4581 ax-pow 4630 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-sn 4030 df-pr 4032 df-uni 4250 df-int 4287 |
Copyright terms: Public domain | W3C validator |