MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reuun1 Unicode version

Theorem reuun1 3611
Description: Transfer uniqueness to a smaller class. (Contributed by NM, 21-Oct-2005.)
Assertion
Ref Expression
reuun1
Distinct variable groups:   ,   ,
Allowed substitution hints:   ( )   ( )

Proof of Theorem reuun1
StepHypRef Expression
1 ssun1 3499 . 2
2 orc 376 . . 3
32rgenw 2780 . 2
4 reuss2 3609 . 2
51, 3, 4mpanl12 665 1
Colors of variables: wff set class
Syntax hints:  ->wi 4  \/wo 359  /\wa 360  A.wral 2712  E.wrex 2713  E!wreu 2714  u.cun 3307  C_wss 3309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1628  ax-9 1669  ax-8 1690  ax-6 1747  ax-7 1752  ax-11 1764  ax-12 1954  ax-ext 2424
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1661  df-eu 2292  df-mo 2293  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ral 2717  df-rex 2718  df-reu 2719  df-v 2967  df-un 3314  df-in 3316  df-ss 3323
  Copyright terms: Public domain W3C validator