Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  reuun1 Unicode version

Theorem reuun1 3668
 Description: Transfer uniqueness to a smaller class. (Contributed by NM, 21-Oct-2005.)
Assertion
Ref Expression
reuun1
Distinct variable groups:   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem reuun1
StepHypRef Expression
1 ssun1 3556 . 2
2 orc 376 . . 3
32rgenw 2827 . 2
4 reuss2 3666 . 2
51, 3, 4mpanl12 665 1
 Colors of variables: wff set class Syntax hints:  ->wi 4  \/wo 359  /\wa 360  A.wral 2759  E.wrex 2760  E!wreu 2761  u.cun 3363  C_wss 3365 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1570  ax-4 1581  ax-5 1644  ax-6 1685  ax-7 1705  ax-10 1751  ax-11 1756  ax-12 1768  ax-13 1955  ax-ext 2470 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1338  df-ex 1566  df-nf 1569  df-sb 1677  df-eu 2317  df-mo 2318  df-clab 2476  df-cleq 2482  df-clel 2485  df-nfc 2614  df-ral 2764  df-rex 2765  df-reu 2766  df-v 3017  df-un 3370  df-in 3372  df-ss 3379
 Copyright terms: Public domain W3C validator