![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > reuun2 | Unicode version |
Description: Transfer uniqueness to a smaller or larger class. (Contributed by NM, 21-Oct-2005.) |
Ref | Expression |
---|---|
reuun2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2813 | . . 3 | |
2 | euor2 2333 | . . 3 | |
3 | 1, 2 | sylnbi 306 | . 2 |
4 | df-reu 2814 | . . 3 | |
5 | elun 3644 | . . . . . 6 | |
6 | 5 | anbi1i 695 | . . . . 5 |
7 | andir 868 | . . . . . 6 | |
8 | orcom 387 | . . . . . 6 | |
9 | 7, 8 | bitri 249 | . . . . 5 |
10 | 6, 9 | bitri 249 | . . . 4 |
11 | 10 | eubii 2306 | . . 3 |
12 | 4, 11 | bitri 249 | . 2 |
13 | df-reu 2814 | . 2 | |
14 | 3, 12, 13 | 3bitr4g 288 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 \/ wo 368 /\ wa 369
E. wex 1612 e. wcel 1818 E! weu 2282
E. wrex 2808 E! wreu 2809 u. cun 3473 |
This theorem is referenced by: hdmap14lem4a 37601 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-rex 2813 df-reu 2814 df-v 3111 df-un 3480 |
Copyright terms: Public domain | W3C validator |