MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reuv Unicode version

Theorem reuv 3125
Description: A uniqueness quantifier restricted to the universe is unrestricted. (Contributed by NM, 1-Nov-2010.)
Assertion
Ref Expression
reuv

Proof of Theorem reuv
StepHypRef Expression
1 df-reu 2814 . 2
2 vex 3112 . . . 4
32biantrur 506 . . 3
43eubii 2306 . 2
51, 4bitr4i 252 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  /\wa 369  e.wcel 1818  E!weu 2282  E!wreu 2809   cvv 3109
This theorem is referenced by:  euen1  7605  hlimeui  26158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-12 1854  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-clab 2443  df-cleq 2449  df-clel 2452  df-reu 2814  df-v 3111
  Copyright terms: Public domain W3C validator