![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > reuv | Unicode version |
Description: A uniqueness quantifier restricted to the universe is unrestricted. (Contributed by NM, 1-Nov-2010.) |
Ref | Expression |
---|---|
reuv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-reu 2814 | . 2 | |
2 | vex 3112 | . . . 4 | |
3 | 2 | biantrur 506 | . . 3 |
4 | 3 | eubii 2306 | . 2 |
5 | 1, 4 | bitr4i 252 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 /\ wa 369
e. wcel 1818 E! weu 2282 E! wreu 2809
cvv 3109 |
This theorem is referenced by: euen1 7605 hlimeui 26158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-12 1854 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-clab 2443 df-cleq 2449 df-clel 2452 df-reu 2814 df-v 3111 |
Copyright terms: Public domain | W3C validator |