![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > reuxfr2 | Unicode version |
Description: Transfer existential uniqueness from a variable to another variable contained in expression . (Contributed by NM, 14-Nov-2004.) (Revised by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
reuxfr2.1 | |
reuxfr2.2 |
Ref | Expression |
---|---|
reuxfr2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reuxfr2.1 | . . . 4 | |
2 | 1 | adantl 466 | . . 3 |
3 | reuxfr2.2 | . . . 4 | |
4 | 3 | adantl 466 | . . 3 |
5 | 2, 4 | reuxfr2d 4675 | . 2 |
6 | 5 | trud 1404 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 wtru 1396 e. wcel 1818 E. wrex 2808
E! wreu 2809 E* wrmo 2810 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-v 3111 |
Copyright terms: Public domain | W3C validator |