MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reuxfr2 Unicode version

Theorem reuxfr2 4676
Description: Transfer existential uniqueness from a variable to another variable contained in expression . (Contributed by NM, 14-Nov-2004.) (Revised by NM, 16-Jun-2017.)
Hypotheses
Ref Expression
reuxfr2.1
reuxfr2.2
Assertion
Ref Expression
reuxfr2
Distinct variable groups:   ,   ,   , ,

Proof of Theorem reuxfr2
StepHypRef Expression
1 reuxfr2.1 . . . 4
21adantl 466 . . 3
3 reuxfr2.2 . . . 4
43adantl 466 . . 3
52, 4reuxfr2d 4675 . 2
65trud 1404 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  /\wa 369  =wceq 1395   wtru 1396  e.wcel 1818  E.wrex 2808  E!wreu 2809  E*wrmo 2810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-v 3111
  Copyright terms: Public domain W3C validator