![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > reuxfr2d | Unicode version |
Description: Transfer existential uniqueness from a variable to another variable contained in expression . (Contributed by NM, 16-Jan-2012.) (Revised by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
reuxfr2d.1 | |
reuxfr2d.2 |
Ref | Expression |
---|---|
reuxfr2d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reuxfr2d.2 | . . . . . . 7 | |
2 | rmoan 3298 | . . . . . . 7 | |
3 | 1, 2 | syl 16 | . . . . . 6 |
4 | ancom 450 | . . . . . . 7 | |
5 | 4 | rmobii 3049 | . . . . . 6 |
6 | 3, 5 | sylib 196 | . . . . 5 |
7 | 6 | ralrimiva 2871 | . . . 4 |
8 | 2reuswap 3302 | . . . 4 | |
9 | 7, 8 | syl 16 | . . 3 |
10 | df-rmo 2815 | . . . . . 6 | |
11 | 10 | ralbii 2888 | . . . . 5 |
12 | 2reuswap 3302 | . . . . 5 | |
13 | 11, 12 | sylbir 213 | . . . 4 |
14 | moeq 3275 | . . . . . . 7 | |
15 | 14 | moani 2346 | . . . . . 6 |
16 | ancom 450 | . . . . . . . 8 | |
17 | an12 797 | . . . . . . . 8 | |
18 | 16, 17 | bitri 249 | . . . . . . 7 |
19 | 18 | mobii 2307 | . . . . . 6 |
20 | 15, 19 | mpbi 208 | . . . . 5 |
21 | 20 | a1i 11 | . . . 4 |
22 | 13, 21 | mprg 2820 | . . 3 |
23 | 9, 22 | impbid1 203 | . 2 |
24 | reuxfr2d.1 | . . . 4 | |
25 | biidd 237 | . . . . 5 | |
26 | 25 | ceqsrexv 3233 | . . . 4 |
27 | 24, 26 | syl 16 | . . 3 |
28 | 27 | reubidva 3041 | . 2 |
29 | 23, 28 | bitrd 253 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
E* wmo 2283 A. wral 2807 E. wrex 2808
E! wreu 2809 E* wrmo 2810 |
This theorem is referenced by: reuxfr2 4676 reuxfrd 4677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-v 3111 |
Copyright terms: Public domain | W3C validator |