![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > reuxfrd | Unicode version |
Description: Transfer existential uniqueness from a variable to another variable contained in expression . Use reuhypd 4679 to eliminate the second hypothesis. (Contributed by NM, 16-Jan-2012.) |
Ref | Expression |
---|---|
reuxfrd.1 | |
reuxfrd.2 | |
reuxfrd.3 |
Ref | Expression |
---|---|
reuxfrd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reuxfrd.2 | . . . . . 6 | |
2 | reurex 3074 | . . . . . 6 | |
3 | 1, 2 | syl 16 | . . . . 5 |
4 | 3 | biantrurd 508 | . . . 4 |
5 | r19.41v 3009 | . . . . 5 | |
6 | reuxfrd.3 | . . . . . . 7 | |
7 | 6 | pm5.32i 637 | . . . . . 6 |
8 | 7 | rexbii 2959 | . . . . 5 |
9 | 5, 8 | bitr3i 251 | . . . 4 |
10 | 4, 9 | syl6bb 261 | . . 3 |
11 | 10 | reubidva 3041 | . 2 |
12 | reuxfrd.1 | . . 3 | |
13 | reurmo 3075 | . . . 4 | |
14 | 1, 13 | syl 16 | . . 3 |
15 | 12, 14 | reuxfr2d 4675 | . 2 |
16 | 11, 15 | bitrd 253 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
E. wrex 2808 E! wreu 2809 E* wrmo 2810 |
This theorem is referenced by: reuxfr 4678 riotaxfrd 6288 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-v 3111 |
Copyright terms: Public domain | W3C validator |