Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexab2 Unicode version

Theorem rexab2 3266
 Description: Existential quantification over a class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ralab2.1
Assertion
Ref Expression
rexab2
Distinct variable groups:   ,   ,   ,   ,

Proof of Theorem rexab2
StepHypRef Expression
1 df-rex 2813 . 2
2 nfsab1 2446 . . . 4
3 nfv 1707 . . . 4
42, 3nfan 1928 . . 3
5 nfv 1707 . . 3
6 eleq1 2529 . . . . 5
7 abid 2444 . . . . 5
86, 7syl6bb 261 . . . 4
9 ralab2.1 . . . 4
108, 9anbi12d 710 . . 3
114, 5, 10cbvex 2022 . 2
121, 11bitri 249 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  <->wb 184  /\wa 369  E.wex 1612  e.wcel 1818  {cab 2442  E.wrex 2808 This theorem is referenced by:  rexrab2  3267  tmdgsum2  20595 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-rex 2813
 Copyright terms: Public domain W3C validator