![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > rexanre | Unicode version |
Description: Combine two different upper real properties into one. (Contributed by Mario Carneiro, 8-May-2016.) |
Ref | Expression |
---|---|
rexanre |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 457 | . . . . . 6 | |
2 | 1 | imim2i 14 | . . . . 5 |
3 | 2 | ralimi 2850 | . . . 4 |
4 | 3 | reximi 2925 | . . 3 |
5 | simpr 461 | . . . . . 6 | |
6 | 5 | imim2i 14 | . . . . 5 |
7 | 6 | ralimi 2850 | . . . 4 |
8 | 7 | reximi 2925 | . . 3 |
9 | 4, 8 | jca 532 | . 2 |
10 | breq1 4455 | . . . . . . . 8 | |
11 | 10 | imbi1d 317 | . . . . . . 7 |
12 | 11 | ralbidv 2896 | . . . . . 6 |
13 | 12 | cbvrexv 3085 | . . . . 5 |
14 | breq1 4455 | . . . . . . . 8 | |
15 | 14 | imbi1d 317 | . . . . . . 7 |
16 | 15 | ralbidv 2896 | . . . . . 6 |
17 | 16 | cbvrexv 3085 | . . . . 5 |
18 | 13, 17 | anbi12i 697 | . . . 4 |
19 | reeanv 3025 | . . . 4 | |
20 | 18, 19 | bitr4i 252 | . . 3 |
21 | ifcl 3983 | . . . . . . 7 | |
22 | 21 | ancoms 453 | . . . . . 6 |
23 | 22 | adantl 466 | . . . . 5 |
24 | r19.26 2984 | . . . . . 6 | |
25 | prth 571 | . . . . . . . 8 | |
26 | simplrl 761 | . . . . . . . . . 10 | |
27 | simplrr 762 | . . . . . . . . . 10 | |
28 | simpl 457 | . . . . . . . . . . 11 | |
29 | 28 | sselda 3503 | . . . . . . . . . 10 |
30 | maxle 11420 | . . . . . . . . . 10 | |
31 | 26, 27, 29, 30 | syl3anc 1228 | . . . . . . . . 9 |
32 | 31 | imbi1d 317 | . . . . . . . 8 |
33 | 25, 32 | syl5ibr 221 | . . . . . . 7 |
34 | 33 | ralimdva 2865 | . . . . . 6 |
35 | 24, 34 | syl5bir 218 | . . . . 5 |
36 | breq1 4455 | . . . . . . . 8 | |
37 | 36 | imbi1d 317 | . . . . . . 7 |
38 | 37 | ralbidv 2896 | . . . . . 6 |
39 | 38 | rspcev 3210 | . . . . 5 |
40 | 23, 35, 39 | syl6an 545 | . . . 4 |
41 | 40 | rexlimdvva 2956 | . . 3 |
42 | 20, 41 | syl5bi 217 | . 2 |
43 | 9, 42 | impbid2 204 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
A. wral 2807 E. wrex 2808 C_ wss 3475
if cif 3941 class class class wbr 4452
cr 9512 cle 9650 |
This theorem is referenced by: o1lo1 13360 rlimuni 13373 lo1add 13449 lo1mul 13450 rlimno1 13476 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-pre-lttri 9587 ax-pre-lttrn 9588 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-po 4805 df-so 4806 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 |
Copyright terms: Public domain | W3C validator |