![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > rexanuz | Unicode version |
Description: Combine two different upper integer properties into one. (Contributed by Mario Carneiro, 25-Dec-2013.) |
Ref | Expression |
---|---|
rexanuz |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.26 2984 | . . . 4 | |
2 | 1 | rexbii 2959 | . . 3 |
3 | r19.40 3008 | . . 3 | |
4 | 2, 3 | sylbi 195 | . 2 |
5 | uzf 11113 | . . . 4 | |
6 | ffn 5736 | . . . 4 | |
7 | raleq 3054 | . . . . 5 | |
8 | 7 | rexrn 6033 | . . . 4 |
9 | 5, 6, 8 | mp2b 10 | . . 3 |
10 | raleq 3054 | . . . . 5 | |
11 | 10 | rexrn 6033 | . . . 4 |
12 | 5, 6, 11 | mp2b 10 | . . 3 |
13 | uzin2 13177 | . . . . . . . . 9 | |
14 | inss1 3717 | . . . . . . . . . . . 12 | |
15 | ssralv 3563 | . . . . . . . . . . . 12 | |
16 | 14, 15 | ax-mp 5 | . . . . . . . . . . 11 |
17 | inss2 3718 | . . . . . . . . . . . 12 | |
18 | ssralv 3563 | . . . . . . . . . . . 12 | |
19 | 17, 18 | ax-mp 5 | . . . . . . . . . . 11 |
20 | 16, 19 | anim12i 566 | . . . . . . . . . 10 |
21 | r19.26 2984 | . . . . . . . . . 10 | |
22 | 20, 21 | sylibr 212 | . . . . . . . . 9 |
23 | raleq 3054 | . . . . . . . . . 10 | |
24 | 23 | rspcev 3210 | . . . . . . . . 9 |
25 | 13, 22, 24 | syl2an 477 | . . . . . . . 8 |
26 | 25 | an4s 826 | . . . . . . 7 |
27 | 26 | rexlimdvaa 2950 | . . . . . 6 |
28 | 27 | rexlimiva 2945 | . . . . 5 |
29 | 28 | imp 429 | . . . 4 |
30 | raleq 3054 | . . . . . 6 | |
31 | 30 | rexrn 6033 | . . . . 5 |
32 | 5, 6, 31 | mp2b 10 | . . . 4 |
33 | 29, 32 | sylib 196 | . . 3 |
34 | 9, 12, 33 | syl2anbr 480 | . 2 |
35 | 4, 34 | impbii 188 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 e. wcel 1818 A. wral 2807
E. wrex 2808 i^i cin 3474 C_ wss 3475
~P cpw 4012 ran crn 5005 Fn wfn 5588
--> wf 5589 ` cfv 5593 cz 10889 cuz 11110 |
This theorem is referenced by: rexfiuz 13180 rexuz3 13181 rexanuz2 13182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-pre-lttri 9587 ax-pre-lttrn 9588 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-po 4805 df-so 4806 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-neg 9831 df-z 10890 df-uz 11111 |
Copyright terms: Public domain | W3C validator |