![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > rexbid | Unicode version |
Description: Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 27-Jun-1998.) |
Ref | Expression |
---|---|
rexbid.1 | |
rexbid.2 |
Ref | Expression |
---|---|
rexbid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexbid.1 | . 2 | |
2 | rexbid.2 | . . 3 | |
3 | 2 | adantr 465 | . 2 |
4 | 1, 3 | rexbida 2963 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
F/ wnf 1616 e. wcel 1818 E. wrex 2808 |
This theorem is referenced by: rexbidvALT 2969 rexeqbid 3067 scott0 8325 infcvgaux1i 13668 bnj1463 34111 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-12 1854 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 df-rex 2813 |
Copyright terms: Public domain | W3C validator |