MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexbid Unicode version

Theorem rexbid 2967
Description: Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 27-Jun-1998.)
Hypotheses
Ref Expression
rexbid.1
rexbid.2
Assertion
Ref Expression
rexbid

Proof of Theorem rexbid
StepHypRef Expression
1 rexbid.1 . 2
2 rexbid.2 . . 3
32adantr 465 . 2
41, 3rexbida 2963 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  F/wnf 1616  e.wcel 1818  E.wrex 2808
This theorem is referenced by:  rexbidvALT  2969  rexeqbid  3067  scott0  8325  infcvgaux1i  13668  bnj1463  34111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-12 1854
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-nf 1617  df-rex 2813
  Copyright terms: Public domain W3C validator