MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexbida Unicode version

Theorem rexbida 2963
Description: Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 6-Oct-2003.)
Hypotheses
Ref Expression
rexbida.1
rexbida.2
Assertion
Ref Expression
rexbida

Proof of Theorem rexbida
StepHypRef Expression
1 rexbida.1 . . 3
2 rexbida.2 . . . 4
32pm5.32da 641 . . 3
41, 3exbid 1886 . 2
5 df-rex 2813 . 2
6 df-rex 2813 . 2
74, 5, 63bitr4g 288 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  /\wa 369  E.wex 1612  F/wnf 1616  e.wcel 1818  E.wrex 2808
This theorem is referenced by:  rexbidvaALT  2966  rexbid  2967  dfiun2g  4362  fun11iun  6760  iuneq12daf  27425  bnj1366  33888  glbconxN  35102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-12 1854
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-nf 1617  df-rex 2813
  Copyright terms: Public domain W3C validator