MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexbidv2 Unicode version

Theorem rexbidv2 2964
Description: Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 22-May-1999.)
Hypothesis
Ref Expression
rexbidv2.1
Assertion
Ref Expression
rexbidv2
Distinct variable group:   ,

Proof of Theorem rexbidv2
StepHypRef Expression
1 rexbidv2.1 . . 3
21exbidv 1714 . 2
3 df-rex 2813 . 2
4 df-rex 2813 . 2
52, 3, 43bitr4g 288 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  /\wa 369  E.wex 1612  e.wcel 1818  E.wrex 2808
This theorem is referenced by:  rexbidva  2965  rexss  3566  exopxfr2  5152  rexsuppOLD  6012  isoini  6234  rexsupp  6937  omabs  7315  elfi2  7894  wemapsolem  7996  ltexpi  9301  rexuz  11160  lpigen  17904  llyi  19975  nllyi  19976  elpi1  21545  xrecex  27616  mrefg2  30639  islssfg2  31017  fourierdlem71  31960  bnj18eq1  33985  ldual1dim  34891  pmapjat1  35577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704
This theorem depends on definitions:  df-bi 185  df-ex 1613  df-rex 2813
  Copyright terms: Public domain W3C validator