MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexbidvaALT Unicode version

Theorem rexbidvaALT 2966
Description: Alternative, shorter proof of rexbida 2963, that bases on more axioms. (Contributed by NM, 9-Mar-1997.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
rexbidva.1
Assertion
Ref Expression
rexbidvaALT
Distinct variable group:   ,

Proof of Theorem rexbidvaALT
StepHypRef Expression
1 nfv 1707 . 2
2 rexbidva.1 . 2
31, 2rexbida 2963 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  /\wa 369  e.wcel 1818  E.wrex 2808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-12 1854
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-nf 1617  df-rex 2813
  Copyright terms: Public domain W3C validator