MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reximdva0 Unicode version

Theorem reximdva0 3796
Description: Restricted existence deduced from nonempty class. (Contributed by NM, 1-Feb-2012.)
Hypothesis
Ref Expression
reximdva0.1
Assertion
Ref Expression
reximdva0
Distinct variable groups:   ,   ,

Proof of Theorem reximdva0
StepHypRef Expression
1 n0 3794 . . 3
2 reximdva0.1 . . . . . . 7
32ex 434 . . . . . 6
43ancld 553 . . . . 5
54eximdv 1710 . . . 4
65imp 429 . . 3
71, 6sylan2b 475 . 2
8 df-rex 2813 . 2
97, 8sylibr 212 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369  E.wex 1612  e.wcel 1818  =/=wne 2652  E.wrex 2808   c0 3784
This theorem is referenced by:  hashgt12el  12481  refun0  20016  cstucnd  20787  supxrnemnf  27583  kerunit  27813  elpaddn0  35524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-rex 2813  df-v 3111  df-dif 3478  df-nul 3785
  Copyright terms: Public domain W3C validator