![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > reximdvai | Unicode version |
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 14-Nov-2002.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 8-Jan-2020.) |
Ref | Expression |
---|---|
reximdvai.1 |
Ref | Expression |
---|---|
reximdvai |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximdvai.1 | . . 3 | |
2 | 1 | ralrimiv 2869 | . 2 |
3 | rexim 2922 | . 2 | |
4 | 2, 3 | syl 16 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 e. wcel 1818
A. wral 2807 E. wrex 2808 |
This theorem is referenced by: reximdv 2931 reximdva 2932 reuind 3303 wefrc 4878 isomin 6233 isofrlem 6236 onfununi 7031 oaordex 7226 odi 7247 omass 7248 omeulem1 7250 noinfep 8097 rankwflemb 8232 infxpenlem 8412 coflim 8662 coftr 8674 zorn2lem7 8903 suplem1pr 9451 axpre-sup 9567 climbdd 13494 filufint 20421 cvati 27285 atcvat4i 27316 mdsymlem2 27323 mdsymlem3 27324 sumdmdii 27334 iccllyscon 28695 dftrpred3g 29316 incsequz2 30242 upbdrech 31505 limcperiod 31634 cncfshift 31676 cncfperiod 31681 lcvat 34755 hlrelat3 35136 cvrval3 35137 cvrval4N 35138 2atlt 35163 cvrat4 35167 atbtwnexOLDN 35171 atbtwnex 35172 athgt 35180 2llnmat 35248 lnjatN 35504 2lnat 35508 cdlemb 35518 lhpexle3lem 35735 cdlemf1 36287 cdlemf2 36288 cdlemf 36289 cdlemk26b-3 36631 dvh4dimlem 37170 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-ral 2812 df-rex 2813 |
Copyright terms: Public domain | W3C validator |