MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reximdvaiOLD Unicode version

Theorem reximdvaiOLD 2930
Description: Obsolete proof of reximdvai 2929 as of 8-Jan-2020. (Contributed by NM, 14-Nov-2002.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
reximdvai.1
Assertion
Ref Expression
reximdvaiOLD
Distinct variable group:   ,

Proof of Theorem reximdvaiOLD
StepHypRef Expression
1 nfv 1707 . 2
2 reximdvai.1 . 2
31, 2reximdai 2926 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  e.wcel 1818  E.wrex 2808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-12 1854
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-nf 1617  df-ral 2812  df-rex 2813
  Copyright terms: Public domain W3C validator