![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > reximi | Unicode version |
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 18-Oct-1996.) |
Ref | Expression |
---|---|
reximi.1 |
Ref | Expression |
---|---|
reximi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximi.1 | . . 3 | |
2 | 1 | a1i 11 | . 2 |
3 | 2 | reximia 2923 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 e. wcel 1818
E. wrex 2808 |
This theorem is referenced by: r19.29d2r 3000 r19.40 3008 reu3 3289 2reu5 3308 ssiun 4372 iinss 4381 elunirn 6163 iiner 7402 erovlem 7426 xpf1o 7699 unbnn2 7797 scott0 8325 dfac2 8532 cflm 8651 alephsing 8677 numthcor 8895 zorng 8905 zornn0g 8906 ttukeyg 8918 uniimadom 8940 axgroth3 9230 qextlt 11431 qextle 11432 mptnn0fsuppd 12104 cshword 12762 rexanre 13179 climi2 13334 climi0 13335 rlimres 13381 lo1res 13382 caurcvgr 13496 caurcvg2 13500 caucvgb 13502 prodmolem2 13742 prodmo 13743 vdwnnlem1 14513 cshwsiun 14584 isnmnd 15924 efgrelexlemb 16768 nn0gsumfz0 17013 pmatcollpw2lem 19278 eltg2b 19460 neiptopuni 19631 neiptopnei 19633 ordtbas2 19692 lmcvg 19763 cnprest 19790 lmcnp 19805 nrmsep2 19857 bwth 19910 1stcfb 19946 islly2 19985 llycmpkgen 20053 txbas 20068 tx1stc 20151 cnextcn 20567 tmdcn2 20588 utoptop 20737 ucnima 20784 cfiluweak 20798 metrest 21027 metustOLD 21070 metust 21071 cfilucfilOLD 21072 cfilucfil 21073 metustblOLD 21083 metustbl 21084 xrhmeo 21446 cmetcaulem 21727 iundisj 21958 limcresi 22289 elply2 22593 aalioulem2 22729 ulmf 22777 2sqlem7 23645 pntrsumbnd 23751 istrkg2ld 23858 tgisline 24007 usgra2edg1 24383 3v3e3cycl1 24644 wwlkn0 24689 1to3vfriendship 25008 2pthfrgrarn 25009 grpoidval 25218 grporcan 25223 grpoinveu 25224 grpomndo 25348 iundisjf 27448 xlt2addrd 27578 xrge0infss 27580 xrofsup 27582 iundisjfi 27601 rhmdvdsr 27808 tpr2rico 27894 esumc 28062 esumfsup 28076 esumpcvgval 28084 hasheuni 28091 voliune 28201 volfiniune 28202 dya2icoseg2 28249 dya2iocnei 28253 dya2iocuni 28254 afsval 28551 lgamucov2 28581 colinearex 29710 segcon2 29755 opnrebl2 30139 sdclem2 30235 heibor1lem 30305 2r19.29 30595 prtlem9 30605 prtlem11 30607 prter1 30620 prter2 30622 eldiophb 30690 rmxyelqirr 30846 hbtlem1 31072 hbtlem7 31074 stirlinglem13 31868 fourierdlem112 32001 reuan 32185 2reu2rex 32188 usg2edgneu 32412 bnj31 33772 bnj1239 33864 bnj900 33987 bnj906 33988 bnj1398 34090 bnj1498 34117 hl2at 35129 cvrval4N 35138 athgt 35180 1dimN 35195 lhpexnle 35730 lhpexle1 35732 cdlemftr2 36292 cdlemftr1 36293 cdlemftr0 36294 cdlemg5 36331 cdlemg33c0 36428 mapdrvallem2 37372 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-ral 2812 df-rex 2813 |
Copyright terms: Public domain | W3C validator |