![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > rexiunxp | Unicode version |
Description: Write a double restricted
quantification as one universal quantifier.
In this version of rexxp 5150, ( ) is not assumed
to be constant.
(Contributed by Mario Carneiro, 14-Feb-2015.) |
Ref | Expression |
---|---|
ralxp.1 |
Ref | Expression |
---|---|
rexiunxp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralxp.1 | . . . . . 6 | |
2 | 1 | notbid 294 | . . . . 5 |
3 | 2 | raliunxp 5147 | . . . 4 |
4 | ralnex 2903 | . . . . 5 | |
5 | 4 | ralbii 2888 | . . . 4 |
6 | 3, 5 | bitri 249 | . . 3 |
7 | 6 | notbii 296 | . 2 |
8 | dfrex2 2908 | . 2 | |
9 | dfrex2 2908 | . 2 | |
10 | 7, 8, 9 | 3bitr4i 277 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 = wceq 1395 A. wral 2807
E. wrex 2808 { csn 4029 <. cop 4035
U_ ciun 4330 X. cxp 5002 |
This theorem is referenced by: rexxp 5150 fsumvma 23488 cvmliftlem15 28743 filnetlem4 30199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-iun 4332 df-opab 4511 df-xp 5010 df-rel 5011 |
Copyright terms: Public domain | W3C validator |