![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > rexmul | Unicode version |
Description: The extended real multiplication when both arguments are real. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
rexmul |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | renepnf 9662 | . . . . . . . . . . 11 | |
2 | 1 | adantr 465 | . . . . . . . . . 10 |
3 | 2 | necon2bi 2694 | . . . . . . . . 9 |
4 | 3 | adantl 466 | . . . . . . . 8 |
5 | renemnf 9663 | . . . . . . . . . . 11 | |
6 | 5 | adantr 465 | . . . . . . . . . 10 |
7 | 6 | necon2bi 2694 | . . . . . . . . 9 |
8 | 7 | adantl 466 | . . . . . . . 8 |
9 | 4, 8 | jaoi 379 | . . . . . . 7 |
10 | renepnf 9662 | . . . . . . . . . . 11 | |
11 | 10 | adantl 466 | . . . . . . . . . 10 |
12 | 11 | necon2bi 2694 | . . . . . . . . 9 |
13 | 12 | adantl 466 | . . . . . . . 8 |
14 | renemnf 9663 | . . . . . . . . . . 11 | |
15 | 14 | adantl 466 | . . . . . . . . . 10 |
16 | 15 | necon2bi 2694 | . . . . . . . . 9 |
17 | 16 | adantl 466 | . . . . . . . 8 |
18 | 13, 17 | jaoi 379 | . . . . . . 7 |
19 | 9, 18 | jaoi 379 | . . . . . 6 |
20 | 19 | con2i 120 | . . . . 5 |
21 | 20 | iffalsed 3952 | . . . 4 |
22 | 7 | adantl 466 | . . . . . . . 8 |
23 | 3 | adantl 466 | . . . . . . . 8 |
24 | 22, 23 | jaoi 379 | . . . . . . 7 |
25 | 16 | adantl 466 | . . . . . . . 8 |
26 | 12 | adantl 466 | . . . . . . . 8 |
27 | 25, 26 | jaoi 379 | . . . . . . 7 |
28 | 24, 27 | jaoi 379 | . . . . . 6 |
29 | 28 | con2i 120 | . . . . 5 |
30 | 29 | iffalsed 3952 | . . . 4 |
31 | 21, 30 | eqtrd 2498 | . . 3 |
32 | 31 | ifeq2d 3960 | . 2 |
33 | rexr 9660 | . . 3 | |
34 | rexr 9660 | . . 3 | |
35 | xmulval 11453 | . . 3 | |
36 | 33, 34, 35 | syl2an 477 | . 2 |
37 | ifid 3978 | . . 3 | |
38 | oveq1 6303 | . . . . . 6 | |
39 | mul02lem2 9778 | . . . . . . 7 | |
40 | 39 | adantl 466 | . . . . . 6 |
41 | 38, 40 | sylan9eqr 2520 | . . . . 5 |
42 | oveq2 6304 | . . . . . 6 | |
43 | recn 9603 | . . . . . . . 8 | |
44 | 43 | mul01d 9800 | . . . . . . 7 |
45 | 44 | adantr 465 | . . . . . 6 |
46 | 42, 45 | sylan9eqr 2520 | . . . . 5 |
47 | 41, 46 | jaodan 785 | . . . 4 |
48 | 47 | ifeq1da 3971 | . . 3 |
49 | 37, 48 | syl5eqr 2512 | . 2 |
50 | 32, 36, 49 | 3eqtr4d 2508 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
\/ wo 368 /\ wa 369 = wceq 1395
e. wcel 1818 =/= wne 2652 if cif 3941
class class class wbr 4452 (class class class)co 6296
cr 9512 0 cc0 9513 cmul 9518 cpnf 9646 cmnf 9647
cxr 9648
clt 9649 cxmu 11346 |
This theorem is referenced by: xmulid1 11500 xmulgt0 11504 xmulasslem3 11507 xlemul1a 11509 xlemul1 11511 xadddilem 11515 nmoix 21236 nmoi2 21237 metnrmlem3 21365 nmoleub2lem 21597 xrecex 27616 rexdiv 27622 pnfinf 27727 xrge0slmod 27834 esumcst 28071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-po 4805 df-so 4806 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-xmul 11349 |
Copyright terms: Public domain | W3C validator |