MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexnal2 Unicode version

Theorem rexnal2 2961
Description: Relationship between two restricted universal and existential quantifiers. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
rexnal2

Proof of Theorem rexnal2
StepHypRef Expression
1 rexnal 2905 . . 3
21rexbii 2959 . 2
3 rexnal 2905 . 2
42, 3bitri 249 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  <->wb 184  A.wral 2807  E.wrex 2808
This theorem is referenced by:  isnsgrp  15915  tgdim01  23898  nn0prpw  30141  smprngopr  30449  ralnex2  31435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-ral 2812  df-rex 2813
  Copyright terms: Public domain W3C validator