![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > rexnal2 | Unicode version |
Description: Relationship between two restricted universal and existential quantifiers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
rexnal2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexnal 2905 | . . 3 | |
2 | 1 | rexbii 2959 | . 2 |
3 | rexnal 2905 | . 2 | |
4 | 2, 3 | bitri 249 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 <-> wb 184
A. wral 2807 E. wrex 2808 |
This theorem is referenced by: isnsgrp 15915 tgdim01 23898 nn0prpw 30141 smprngopr 30449 ralnex2 31435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-ral 2812 df-rex 2813 |
Copyright terms: Public domain | W3C validator |