![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > rexprg | Unicode version |
Description: Convert a quantification over a pair to a disjunction. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.) |
Ref | Expression |
---|---|
ralprg.1 | |
ralprg.2 |
Ref | Expression |
---|---|
rexprg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4032 | . . . 4 | |
2 | 1 | rexeqi 3059 | . . 3 |
3 | rexun 3683 | . . 3 | |
4 | 2, 3 | bitri 249 | . 2 |
5 | ralprg.1 | . . . . 5 | |
6 | 5 | rexsng 4065 | . . . 4 |
7 | 6 | orbi1d 702 | . . 3 |
8 | ralprg.2 | . . . . 5 | |
9 | 8 | rexsng 4065 | . . . 4 |
10 | 9 | orbi2d 701 | . . 3 |
11 | 7, 10 | sylan9bb 699 | . 2 |
12 | 4, 11 | syl5bb 257 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
\/ wo 368 /\ wa 369 = wceq 1395
e. wcel 1818 E. wrex 2808 u. cun 3473
{ csn 4029 { cpr 4031 |
This theorem is referenced by: rextpg 4081 rexpr 4083 fr2nr 4862 sgrp2nmndlem5 16047 nb3graprlem2 24452 frgra2v 24999 3vfriswmgralem 25004 ldepspr 33074 zlmodzxzldeplem4 33104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-rex 2813 df-v 3111 df-sbc 3328 df-un 3480 df-sn 4030 df-pr 4032 |
Copyright terms: Public domain | W3C validator |