MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexprg Unicode version

Theorem rexprg 4079
Description: Convert a quantification over a pair to a disjunction. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
ralprg.1
ralprg.2
Assertion
Ref Expression
rexprg
Distinct variable groups:   ,   ,   ,   ,

Proof of Theorem rexprg
StepHypRef Expression
1 df-pr 4032 . . . 4
21rexeqi 3059 . . 3
3 rexun 3683 . . 3
42, 3bitri 249 . 2
5 ralprg.1 . . . . 5
65rexsng 4065 . . . 4
76orbi1d 702 . . 3
8 ralprg.2 . . . . 5
98rexsng 4065 . . . 4
109orbi2d 701 . . 3
117, 10sylan9bb 699 . 2
124, 11syl5bb 257 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  \/wo 368  /\wa 369  =wceq 1395  e.wcel 1818  E.wrex 2808  u.cun 3473  {csn 4029  {cpr 4031
This theorem is referenced by:  rextpg  4081  rexpr  4083  fr2nr  4862  sgrp2nmndlem5  16047  nb3graprlem2  24452  frgra2v  24999  3vfriswmgralem  25004  ldepspr  33074  zlmodzxzldeplem4  33104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-rex 2813  df-v 3111  df-sbc 3328  df-un 3480  df-sn 4030  df-pr 4032
  Copyright terms: Public domain W3C validator