![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > rexrab2 | Unicode version |
Description: Existential quantification over a class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
ralab2.1 |
Ref | Expression |
---|---|
rexrab2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 2816 | . . 3 | |
2 | 1 | rexeqi 3059 | . 2 |
3 | ralab2.1 | . . 3 | |
4 | 3 | rexab2 3266 | . 2 |
5 | anass 649 | . . . 4 | |
6 | 5 | exbii 1667 | . . 3 |
7 | df-rex 2813 | . . 3 | |
8 | 6, 7 | bitr4i 252 | . 2 |
9 | 2, 4, 8 | 3bitri 271 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 E. wex 1612 e. wcel 1818
{ cab 2442 E. wrex 2808 { crab 2811 |
This theorem is referenced by: frminex 4864 sstotbnd3 30272 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-rex 2813 df-rab 2816 |
Copyright terms: Public domain | W3C validator |