![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > rexraleqim | Unicode version |
Description: Statement following from existence and generalization with equality. (Contributed by AV, 9-Feb-2019.) |
Ref | Expression |
---|---|
rexraleqim.1 | |
rexraleqim.2 |
Ref | Expression |
---|---|
rexraleqim |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexraleqim.1 | . . . . . . 7 | |
2 | eqeq1 2461 | . . . . . . 7 | |
3 | 1, 2 | imbi12d 320 | . . . . . 6 |
4 | 3 | rspcva 3208 | . . . . 5 |
5 | rexraleqim.2 | . . . . . 6 | |
6 | 5 | biimpd 207 | . . . . 5 |
7 | 4, 6 | syli 37 | . . . 4 |
8 | 7 | impancom 440 | . . 3 |
9 | 8 | rexlimiva 2945 | . 2 |
10 | 9 | imp 429 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
A. wral 2807 E. wrex 2808 |
This theorem is referenced by: cramerlem3 19191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-v 3111 |
Copyright terms: Public domain | W3C validator |