![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > rexxpf | Unicode version |
Description: Version of rexxp 5150 with bound-variable hypotheses. (Contributed by NM, 19-Dec-2008.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
ralxpf.1 | |
ralxpf.2 | |
ralxpf.3 | |
ralxpf.4 |
Ref | Expression |
---|---|
rexxpf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralxpf.1 | . . . . . 6 | |
2 | 1 | nfn 1901 | . . . . 5 |
3 | ralxpf.2 | . . . . . 6 | |
4 | 3 | nfn 1901 | . . . . 5 |
5 | ralxpf.3 | . . . . . 6 | |
6 | 5 | nfn 1901 | . . . . 5 |
7 | ralxpf.4 | . . . . . 6 | |
8 | 7 | notbid 294 | . . . . 5 |
9 | 2, 4, 6, 8 | ralxpf 5154 | . . . 4 |
10 | ralnex 2903 | . . . . 5 | |
11 | 10 | ralbii 2888 | . . . 4 |
12 | 9, 11 | bitri 249 | . . 3 |
13 | 12 | notbii 296 | . 2 |
14 | dfrex2 2908 | . 2 | |
15 | dfrex2 2908 | . 2 | |
16 | 13, 14, 15 | 3bitr4i 277 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 = wceq 1395 F/ wnf 1616
A. wral 2807 E. wrex 2808 <. cop 4035
X. cxp 5002 |
This theorem is referenced by: iunxpf 5156 wdom2d2 30977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-iun 4332 df-opab 4511 df-xp 5010 df-rel 5011 |
Copyright terms: Public domain | W3C validator |