![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > rgen2 | Unicode version |
Description: Generalization rule for restricted quantification, with two quantifiers. (Contributed by NM, 30-May-1999.) |
Ref | Expression |
---|---|
rgen2.1 |
Ref | Expression |
---|---|
rgen2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rgen2.1 | . . 3 | |
2 | 1 | ralrimiva 2871 | . 2 |
3 | 2 | rgen 2817 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
e. wcel 1818 A. wral 2807 |
This theorem is referenced by: rgen3 2883 f1stres 6822 f2ndres 6823 smobeth 8982 disjxwrd 12680 wrd2ind 12703 smupf 14128 xpsff1o 14965 efgmf 16731 efglem 16734 txuni2 20066 divcn 21372 abscncf 21405 recncf 21406 imcncf 21407 cjcncf 21408 cnllycmp 21456 bndth 21458 dyadf 22000 cxpcn3 23122 sgmf 23419 smcnlem 25607 helch 26161 hsn0elch 26166 hhshsslem2 26184 shscli 26235 shintcli 26247 0cnop 26898 0cnfn 26899 idcnop 26900 lnophsi 26920 nlelshi 26979 cnlnadjlem6 26991 cnzh 27951 rezh 27952 cnllyscon 28690 rellyscon 28696 mblfinlem1 30051 mblfinlem2 30052 fneref 30168 frmx 30849 frmy 30850 2zrngnmrid 32756 ldepslinc 33110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ral 2812 |
Copyright terms: Public domain | W3C validator |