Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rgen2aOLD Unicode version

Theorem rgen2aOLD 2885
 Description: Obsolete proof of rgen2a as of 1-Jan-2020. (Contributed by NM, 23-Nov-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
rgen2a.1
Assertion
Ref Expression
rgen2aOLD
Distinct variable group:   ,

Proof of Theorem rgen2aOLD
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 eleq1 2529 . . . . . . . 8
2 rgen2a.1 . . . . . . . . 9
32ex 434 . . . . . . . 8
41, 3syl6bi 228 . . . . . . 7
54pm2.43d 48 . . . . . 6
65alimi 1633 . . . . 5
76a1d 25 . . . 4
8 eleq1 2529 . . . . . 6
98dvelimv 2080 . . . . 5
103alimi 1633 . . . . 5
119, 10syl6 33 . . . 4
127, 11pm2.61i 164 . . 3
13 df-ral 2812 . . 3
1412, 13sylibr 212 . 2
1514rgen 2817 1
 Colors of variables: wff setvar class Syntax hints:  -.wn 3  ->wi 4  /\wa 369  A.wal 1393  e.wcel 1818  A.wral 2807 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-nf 1617  df-cleq 2449  df-clel 2452  df-ral 2812
 Copyright terms: Public domain W3C validator